Multiple Attribute Decision Making

Gwo-Hshiung Tzeng

Jih-Jeng Huang

New Concepts and Trends of MCDM for Tomorrow -Solving Actual Problems -

Tutorial

Fuzzy Multiple Objective Decision Making

Gwo-Hshiung Tzeng Jih-Jeng Huang

Gwo-Hshiung Tzeng

Distinguished Chair Professor

College of Public Affairs National Taipei University

2013 Joint Rough Set Symposium (JRS 2013) October 10-13, 2013, Halifax, Canada

uthons: he Back cover description that will be placed here will be routed separately fre e copywriting department. You will have a chance to review and make correctio that time.

CRC Press Table American The CRC Press The CRC Press

New Publications

- Liou, James J.H. and Tzeng, G.H. (Corresponding author) (2012), Comments on "Multiple criteria decision making (MCDM) methods in economics: An overview", *Technological and Economic Development of Economy*, 18(4), 672-695 (SSCI, IF: 5.605, 2011; IF: 3.235, 2012).
- Kua-Hsin Peng, Gwo-Hshiung Tzeng (Corresponding author) (2013), A hybrid dynamic MADM model for problems-improvement in economics and business, *Technological and Economic Development* of Economy, 19(4), xx-xx (SSCI, IF: 5.605, 2011; IF: 3.235, 2012).
- James J.H. Liou, Yen-Ching Chuang, Gwo-Hshiung Tzeng (Corresponding author) (2013) "A fuzzy integral-based model for supplier evaluation and improvement, Information Sciences (Accepted, Impact factor: 3.643, 5-Year Impact Factor: 3.676, 2012).
- Jih-Jeng Huang, Gwo-Hshiung Tzeng (Corresponding author) (2013), New thinking of multi-objective programming with changeable space - In search of excellence, *Technological and Economic Development of Economy*, Accepted (forcoming, SSCI, IF: 5.605, 2011; IF: 3.235, 2012).

New Journal Papers

<u>2013</u>

- Yu-Chien Ko, Hamido Fujita, Gwo-Hshiung Tzeng (Corresponding author) (2013), <u>An extended fuzzy measure on competitiveness correlation</u> based on WCY 2011, *Knowledge-Based Systems*, *Volume 37, January 2013, Pages 86-93* (SCI, IF: 4.104, 3.371 (5-years, 2012).
- •

•

•

.

- Wan-Yu Chiu, Gwo-Hshiung Tzeng (Corresponding author), Han-Lin Li (2013), <u>A new hybrid MCDM model combining DANP with VIKOR</u> to improve e-store business, *Knowledge-Based Systems*, *Volume 37, January 2013, Pages 48-61* (SCI, IF: 4.104, 3.371 (5-years, 2012)).
- Jen-Wei Cheng, Wei-La Chiu, Gwo-Hshiung Tzeng (Corresponding author) (2013). Do impression management tactics and/or supervisorsubordinate guanxi matter? *Knowledge-Based Systems*, *Volume 40, March 2013, Pages 123-133* (SCI, IF: 4.104, 3.371 (5-years, 2012)).
- Chui-Hua Liu, **Gwo-Hshiung Tzeng**, Ming-Huei Lee, Po-Yen Lee (2013). <u>Improving metro-airport connection service for tourism</u> <u>development: Using hybrid MCDM models</u>, *Tourism Management Perspectives*, *Volume 6*, *April 2013*, *Pages 95-107*.
- Kua-Hsin Peng, Gwo-Hshiung Tzeng (Corresponding author) (2013), A hybrid dynamic MADM model for problems-improvement in economics and business, *Technological and Economic Development of Economy*, 19(3) (Forthcoming, SSCI, IF: 5.605, 2011; IF: 3.235, 2012).
- Jih-Jeng Huang, Gwo-Hshiung Tzeng (2013), New thinking of multi-objective programming with changeable space In search of excellence, *Technological and Economic Development of Economy* (Accepted, SSCI, IF: 5.605, 2011; IF: 3.235, 2012).
- Chiu-Hung Su, Hao-Lin Tseng and Gwo-Hshiung Tzeng (2013), Exploring the factors determining the adoption of cloud-service applications using a new hybrid MCDM model', International Journal of Innovative Computing, Information and Control (Accepted).
- Hsuan-Shih Lee, Gwo-Hshiung Tzeng, Weichung Yeih, Yu-Jie Wang, Shing-Chih Yang (2013). Revised DEMATEL: Resolving the Infeasibility of DEMATEL, Applied Mathematical Modelling, Volume 37, Issues 10–11, 1 June 2013, Pages 6746-6757 (SCI, IF: 1.706, 1.674 (5-years, 2012).
- Liu, C.H., Tzeng, G.H. (Corresponding author), Lee, M.H. (2013), Strategies for improving cruise product sales in the travel agency- using hybrid MCDM models, The Service Industry Journal, <u>Volume 33</u>, <u>Issue 5</u>, pages 542-563. (2010 Impact Factor: 1.071).
 DOI:10.1080/02642069.2011.614342
- Yu-Chien Ko, Hamido Fujita, **Gwo-Hshiung Tzeng** (Corresponding author) (2013), A fuzzy integral fusion approach in analyzing competitiveness patterns from WCY2010, *Knowledge-Based Systems*, *Volume 49, September 2013, Pages 1-9* (SCI, IF: 4.104, 3.371 (5-years, 2012)).

- Ming-Tsang Lu, Shi-Woei Lin, Gwo-Hshiung Tzeng (Corresponding author) (2013), Improving RFID adoption in Taiwan's healthcare industry based on a DEMATEL technique with a hybrid MCDM model, Decision Support Systems, *In Press, Corrected Proof*, *Available online 27 June 2013* (Impact factor: 2.201, 5-Year Impact Factor: 3.037).
- Toshimasa Ozaki, Kanna Miwa, Akihiro Itoh (Nagoya Gakuin University), Shin Sugiura, Eizo Kinoshita (Meijo University), and **Gwo-Hshiung Tzeng** (Kainan University) (2013). Dissolution of Dilemma by Newly Defining Criteria Matrix in ANP, **Journal of the Operations Research Society of Japan**, Vol. 56, No. 2, June 2013, pp. 93–110.
- Kao-Yi Shen, Min-Ren Yan, and Gwo-Hshiung Tzeng (Corresponding author) (2013), Combining VIKOR-DANP model for glamour stock selection and stock performance improvement, Knowledge-Based Systems, *In Press, Accepted Manuscript, Available online 3 September 2013* (SCI, IF: 4.104, 3.371 (5-years, 2012).
- James J.H. Liou, Yen-Ching Chuang, Gwo-Hshiung Tzeng (Corresponding author) (2013) "A fuzzy integral-based model for supplier evaluation and improvement, Information Sciences (Accepted, Impact factor: 3.643, 5-Year Impact Factor: 3.676, 2012).
- •
- **Yu-Chien Ko, Hamido Fujita, Gwo-Hshiung Tzeng** (2013), A simple utility function with the rules-verified weights for analyzing the top competitiveness of WCY 2012, *Knowledge-Based Systems*, *Accepted* (SCI, IF: **4.104**, 3.371 (5-years, 2012).
- <u>2012</u>
- James J.H. Liou, Gwo-Hshiung Tzeng (Corresponding author) (2012), Comments on "Multiple criteria decision making (MCDM) methods in economics: An overview", *Technological and Economic Development of Economy*, 18(4), 672-695 (SSCI, IF: 5.605, 2011; IF: 3.235, 2012).
- •

•

- Chui-Hua Liu, **Gwo-Hshiung Tzeng** (Corresponding author), Ming-Huei Lee (2012), Improving tourism policy implementation the use of hybrid MCDM models, **Tourism Management**, Volume **33**, Issue **2**, Pages 239-488 (April 2012) (**SSCI**, **IF: 2.620**, **3.415** (5-years), 2010)
- Yung-Lan Wang, Gwo-Hshiung Tzeng (Corresponding author) (2012), Brand Marketing for Creating Brand Value Based on a MCDM Model Combining DEMATEL with ANP and VIKOR Methods, Expert Systems with Applications, *Volume 39, Issue 5, April 2012, Pages 5600-5615* (SCI, IF: 2.908, 3.162 (5-years), 2009).
- •
- Ozaki, Toshimasa; Lo, Mei-Chen; Kinoshita, Eizo; **Tzeng, Gwo-Hshiung** (2012), Decision-making for the Best Selection of Suppliers by Using Minor ANP, Journal of Intelligent Manufacturing (JIM), December 2012, Volume 23, <u>Issue 6</u>, pp 2171-2178. (**SCI, Impact Factor: 0.938, 2011**)
- •

.

- Ming-Tsang Lu, Gwo-Hshiung Tzeng (Corresponding author), Ling-Lang Tang (2012). Environmental strategic orientations for improving green innovation performance in the electronics industry using fuzzy hybrid MCDM model, International Journal of Fuzzy Systems (Accepted with minor revision, SCI, IF: 1.16, 2012)
- 4

- Yu-Ping Ou Yang, How-Ming Shieh, Gwo-Hshiung Tzeng (2012), <u>A VIKOR technique based on DEMATEL and ANP for information</u> security risk control assessment. *Information Sciences*, *Volume 232, 20 May 2013, Pages 482-500* (SCI, IF= 3.643, 3.676 (5-years), 2012)
- Sheng-Kai Fang, Jhieh-Yu Shyng, Wen-Shiung Lee, Gwo-Hshiung Tzeng (Corresponding author) (2012). Combined Data Mining techniques for exploring the preference of customers between financial companies and agents based on TCA, Knowledge-Based Systems, 27, 137-151. (SCI, IF: 4.104, 3.371 (5-years, 2012)).
- •
- Liou, Jame J.H., **Tzeng, G.H**. (Corresponding author), Hsu, C.C., Yeh, W.C. (2012). Reply to "comment on using a modified grey relation method for improving airline service quality, **Tourism Management**, **33**(3), **719-720**. (**SSCI**, **IF**: **2.571**, **3.552** (5-years), 2012).
- Hiroaki Ishii, Shogo Shiode, Hark Hwang, **Gwo-Hshiung Tzeng**, Hirosato Seki (2012), <u>Preface 'Soft computing for management systems'</u> *Computers & Industrial Engineering, Volume 62, Issue 3, April 2012, Page 687* (SCI, IF: 1.516, 2.028 (5-years), 2012).
- .
- Don Jyh-Fu Jeng, Gwo-Hshiung Tzeng (2012), Social Influence on the Use of Clinical Decision Support Systems: Revisiting the Unified Theory of Acceptance and Use of Technology by the Fuzzy DEMATEL Technique, Computers & Industrial Engineering, Volume 62, Issue 3, April 2012, Pages 819-828. (SCI, IF: 1.516, 2.028 (5-years), 2012).
- Meng-Jong Kuan, Gwo-Hshiung Tzeng and Chia-Chun Hsiang (2012), Exploring the Quality Assessment System for New Product Development Process by combining DANP with MCDM Model, International Journal of Innovative Computing, Information and Control (special issue), Vol. 8, No. 8, 5745-5762 (SCI, Impact Factor=2.932, Rank=14/102 Category: Computer Science, Artificial Intelligence, 2011).
- •
- Chi-Yo Huang, Gwo-Hshiung Tzeng, Yun-Ting Chen and Hueiling Chen (2012), Performance Evaluation of Leading Fabless Integrated Circuit Design Houses by Using a Multiple Objective Programming Based Data Envelopment Analysis Approach, International Journal of Innovative Computing Information and Control, Vol. 8, No. 8, 5899-5916 (SCI, Impact Factor=2.932, Rank=14/102 Category: Computer Science, Artificial Intelligence, 2011).
- •
- Hsu, C.H., Wang, F.K. and **Tzeng, G.H.**, 2012. The best vendor selection for conducting the recycled material based on a hybrid MCDM model combining DANP with VIKOR. **Resources, Conservation & Recycling, Vol. 66, pp. 95-111**. (SCI, IF: 2.319, 2.889 (5-years), 2010).
- •
- Ying-Hsun Hung, Tsong-Liang Huang, Jing-Chzi Hsieh, Hung-Jia Tsuei, Chun-Chuan Cheng, **Gwo-Hshiung Tzeng** (2012), <u>Online reputation</u> <u>management for improving marketing by using a hybrid MCDM model</u>, *Knowledge-Based Systems*, *Volume 35*, *November 2012*, *Pages 87-93* (SCI, IF: 4.104, 3.371 (5-years, 2012)).
- •
- Yung-Chi Shen, Grace T.R. Lin, **Gwo-Hshiung Tzeng** (2012), "A novel multi-criteria decision-making combining Decision Making Trial and Evaluation Laboratory technique for technology evaluation", Foresight, Vol. 14 Iss: 2, pp.139 153.

- Chi-Yo Huang, Po-Yen Wang, and Gwo-Hshiung Tzeng (2012), Evaluating Top Information Technology Firms in Standard and Poor 500 index by Using a Multiple Objective Programming Based Data Envelopment Analysis, Lecture Notes in Computer Science, IEA/AIE 2012, LNAI 7345, pp. 720—730, Springer, Heidelberg. (EI)
- Yu-Chien Ko, Hamido Fujita, and Gwo-Hshiung Tzeng (2012), Using DRSA and Fuzzy Measure to Enlighten Policy Making for Enhancing National Competitiveness by WCY 2011, in H. Jiang et al. (Eds.): Lecture Notes in Science, IEA/AIE 2012, LNAI 7345, pp. 709—719, Springer, Heidelberg (2012). (EI)
- •
- Chi-Yo Huang, Ming-Jenn Wu, Yu-Wei Liu, and Gwo-Hshiung Tzeng (2012), Using the DEMATEL Based Network Process and Structural Equation Modeling Methods for Deriving Factors Influencing the Acceptance of Smart Phone Operation Systems, in H. Jiang et al. (Eds.): Lecture Notes in Computer Science, IEA/AIE 2012, LNAI 7345, pp. 731—741, Springer, Heidelberg (2012). (EI)
- Shu-kung Hu, Yen-Ching Chuang, Ya-Fan Yeh, **Gwo-Hshiung Tzeng (2012)**, Hybrid MADM with Fuzzy Integral for Exploring the Smart Phone Improvement in M-Generation, International Journal of Fuzzy Systems, 14(2), 204-214. (SCI, IF= 1.16, 2010; EI).
- **Gwo-Hshiung Tzeng** (Corresponding author), Chi-Yo Huang (2012), <u>Combined DEMATEL technique with hybrid MCDM methods for creating the</u> <u>aspired intelligent global manufacturing & logistics systems</u>, **Annals of Operations Research: Volume 197, Issue 1 (2012), Page 159-190** (SCI, **IF: 1.029**, 2012)
- •
- Krzysztof Targiel, Tadeusz Trzaskalik, Małgorzata Trzaskalik-Wyrwa, **Gwo Hsiung Tzeng** (2012): DEMATEL, ANP and VIKOR Based Hybrid Method Application to Restoration of Historical Organs, in Tadeusz Trzaskalik and Tomasz Wachowicz (Eds.), Multiple Criteria Decision making '12, Scientific Publications, the University of Economics in Katowice.

Tutorial

- New concepts and trends of MCDM for Tomorrow: Solving actual problems
- How consider for solving the real world
- Basic concepts of ideas and thinking in trends
- Some examples for the real cases: New hybrid MCDM model
 - MADM DEMATEL, DANP (DEMATEL-based ANP), Integration (Additive: SAW, VIKOR, Grey Relation Analysis, PROMETHEE, ELECTRE; Non-additive: Fuzzy Integral)
 - MODM Changeable Spaces Programming

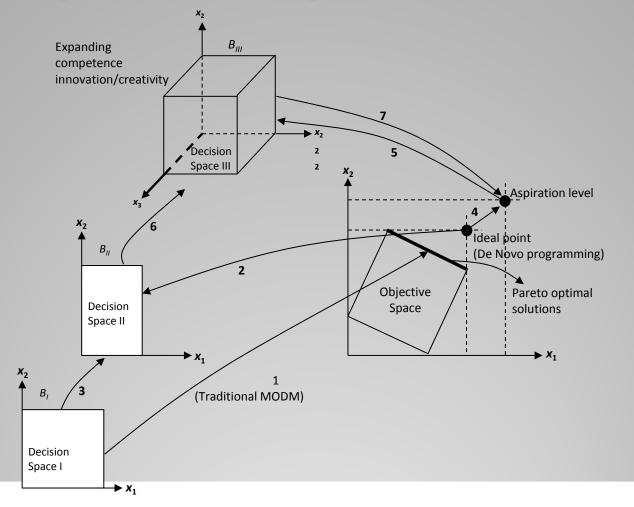
Conclusions

(relieve traditional assumption/hypothesis in unrealistic)

- Which concepts and how trends in future prospects of MCDM field for Tomorrow?
- Which problems will be improved for satisfying the users'/customers'/social needs in real (marketing, etc.) situations?
- How overall considering problems in total, aspects/dimensions, and criteria can be achieved the aspiration levels?

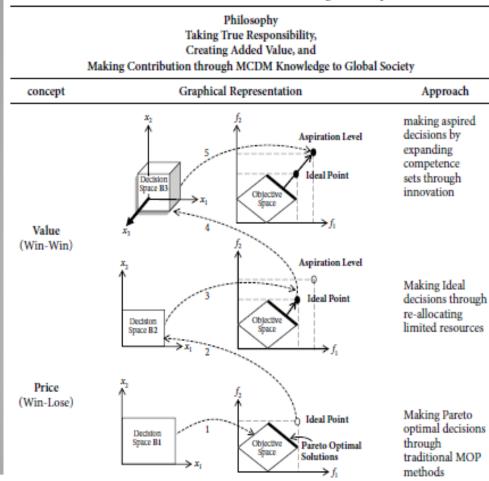
- We find that the traditional MCDM field ignored some important new concepts and trends, needed some assumptions limit/defects to solve actual real-world problems (how relax or relieve?).
- Therefore, in our researches some new concepts and trends in the MCDM field for solving actual problems have been proposed as follows.

- First, the traditional model (such path analysis, SEM, etc.) assumes that the criteria in valuecreated are independent and hierarchical in structure;
- However, criteria are often interdependent in real-world problems; because "Statistics and Economics are unrealistic in the real world",
- So DEMATEL technique can be used to find the interrelationship matrix and build a influential network relation map (INRM) for solving the relationship problems in the real world.


- Second, the relative good solution (max-min) from the existing alternatives is replaced by the aspiration levels to avoid "Choose the best among inferior choices/alternatives", i.e., avoid "Pick the best apple among a barrel of rotten apples".
- HA Simon Decision and organization, 1972 innovbfa.viabloga.com ... The Scottish word
 "satisficing" (=satisfying) has been revived to denote problem solving and decision making that sets an aspiration level, searches until an alternative is found that is satisfactory by the aspiration level criterion, and selects that alternative (Simon (1957), Part IV ...

Third, the emphasis in the field has shifted from ranking and selection when determining the most preferable approaches to performance improvement of existing methods based on INRM, because "we need a systematic approach to problem-solving; instead of addressing the systems of the problem, we need to identify the sources of the problem".

Fourth, information fusion/aggregation such as fuzzy integrals, basically, a non-additive/superadditive model, has been developed to aggregate the performances. Therefore, in order to overcome the defects of conventional MADM method, we have focused on developing a series of new Hybrid Dynamic Multiple Criteria Decision Making (HDMADM) method for solving the complication dynamic problems in real world and applying to improve the real issues in the trends and prospects.


Fifth, we proposed a new thinking of MODM models with **changeable spaces** to help the decision-makers for win-win planning/designing to achieve the aspiration level, which is better than to achieve the ideal point or Pareto optimal solutions.

The concepts of changeable decision space and aspiration level

Changeable Space Programming

Toward a MCDM New Era - Professor Tzeng's Roadmap

Fuzzy Multiple Objective Decision Making

Gwo-Hshiung Tzeng Jih-Jeng Huang

C BC Pres

and the lot of the lot of the

Review

COMMENTS ON "MULTIPLE CRITERIA DECISION MAKING (MCDM) METHODS IN ECONOMICS: AN OVERVIEW"

James J. H. Liou¹, Gwo-Hshiung Tzeng²

E-mails: 1jamesjhliou@gmail.com; 2ghtzeng@mail.knu.edu.tw (corresponding author)

Abstract. This paper offers comments on a previously published paper, titled "Multiple criteria decision making (MCDM) methods in economics: an overview," by Zavadskas and Turskis (2011). The paper's authors made great efforts to summarize MCDM methods but may have failed to consider several important new concepts and trends in the MCDM field for solving actual problems. First, the traditional model assumes the criteria are independently and hierarchically structured; however, in reality, problems are often characterized by interdependent criteria and dimensions and may even exhibit feedback-like effects. Second, relatively good solutions from the existing alternatives are replaced by aspiration levels to fit today's competitive markets. Third, the emphasis in the field has shifted from ranking and selection when determining the most preferable approaches to performance improvement of existing methods. Fourth, information fusion techniques, including the fuzzy integral method, have been developed to aggregate the performances. Finally, the original fixed resources in multi-objective programming are divided such that both decision and objective spaces are changeable. In this paper, we add new concepts and provide comments that could be thought of as an attempt to complete the original paper.

TECHNOLOGICAL AND ECONOMIC DEVELOPMENT OF ECONOMY

ISSN 2029-4913 print/ISSN 2029-4921 online

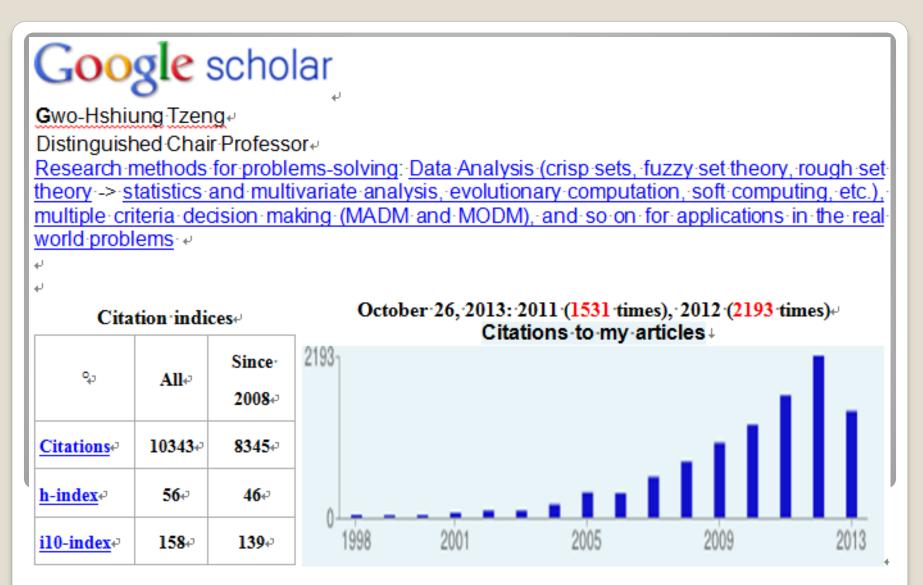
2013 Volume 19(2): 367-375 doi:10.3846/20294913.2013.811037

Invited review

NEW CONCEPTS AND TRENDS OF MCDM FOR TOMORROW – IN HONOR OF PROFESSOR GWO-HSHIUNG TZENG ON THE OCCASION OF HIS 70th BIRTHDAY

James J. H. LIOU

Department of Industrial Engineering and Management, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan


Abstract. This article introduces several new concepts and trends in multiple criteria decision making (MCDM) for solving actual problems, as proposed by Professor Gwo-Hshiung Tzeng. These new concepts are as follows: (1) interdependency in real-world problems; (2) replacing the relative good solution from the existing alternatives using aspiration levels; (3) shifting from ranking and selection to performance improvement; (4) information fusion/aggregation; and (5) changeable decision spaces. To honor Prof. Tzeng's contribution in the MCDM field and to commemorate his 70th birthday, this article also highlights his research career in MCDM and some publication list in the past 10 years.

Keywords: MCDM, MADM, MODM, DEMATEL, DANP, VIKOR, Changeable space, Aspiration level.

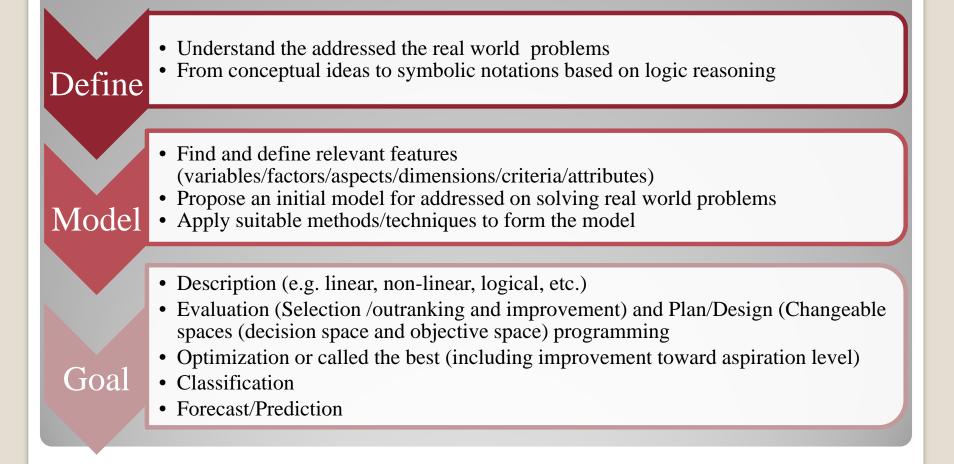
Reference to this paper should be made as follows: Liou, J. J. H. 2013. New concepts and trends of MCDM for tomorrow – in honor of Professor Gwo-Hshiung Tzeng on the occasion of his 70^m birthday, Technological and Economic Development of Economy 19(2): 367–375.

New trends and concepts in MCDM

Over the past two decades, the development of information technology (IT) has been characterized by a series of positive, but temporary, shocks. The alternate perspective is that IT in Internet communication has produced a fundamental change in the world, leading to a permanent improvement in fast growth-change prospects such as telephone, telegraph, Internet, smart phone, i-phone, i-pad, cloud computing, business, economy, society, and government. What are the prospects for future trends? Which problems will be solved regarding user/ customer/societal needs in marketing situations, and how can overall problems in dimensions and criteria be resolved using aspiration levels? The traditional MCDM field ignored some important new concepts and trends and needed several assumptions to solve real-world problems. Therefore, Prof. Tzeng proposed some new concepts for facing tomorrow's world. First, the traditional model assumes that the criteria in value-creation are independent and hierarchical in structure; however, criteria are often interdependent in real-world problems because 'Some statistics and economics assumptions are unrealistic in the real world'. The Decision Making Trial and Evaluation Laboratory (DEMATEL) technique is an effective tool to find the interrelationship matrix and building an influential network relation map (INRM) for solving relationship problems in the real world. Second, the relatively good solution from existing alternatives is replaced by aspiration levels to avoid "Choosing the best among inferior options/alternatives", i.e. "Picking the best apple among a barrel of rotten apples". Third, the emphasis in the field has shifted from ranking and selection when determining the most preferable approaches to performance improvement of existing methods based on INRM because "we need a systematic approach to problem-solving; instead of addressing the 20 systems of the problem, we need to identify the sources of the problem". Fourth, Kahneman and Tversky (Kahneman received the Nobel Prize in Economics in 2002) developed the basic concept of the non-additive (or super-additive) value-function aggregation in multi-criteria problems in 1973. Simon incorporated the basic concept of the "aspiration level" in his work, receiving the Nobel Prize in Economics in 1978. The question that arises is "How can we implement these two concepts (non-additive value function and aspiration level) within real-world inter-relationship (dependence and feedback) problems?" Information fusion or aggregation/integration such as fuzzy integrals (basically, a non-additive or super-additive model) has been developed to aggregate/integrate performances. Therefore, to overcome the defects of the conventional Multiple Attributes Decision Making (MADM) method, a new Hybrid Dynamic Multiple Criteria Decision Making (HDMADM) method has been developed for solving complicated and dynamic problems in the real world and application to improve real issues, e.g. Internet communication, government overall policy improvement, etc. Fifth, classical Multiple Objectives Decision Making (MODM) methods are used to pursue an optimal solution in a fixed feasible region (objective space) based on fixed conditions or resources (decision space). A new thinking of MODM models with changeable spaces can help decision-makers reach a win-win for planning/designing and achieve the desired point (aspiration level), which is better than pursuing the ideal point or Pareto optimal solution.

http://scholar.google.com/citations?user=ZRXOrvQAAAAJ&hl=en&

http://scholar.google.com/citations?user=ZRXOrvQAAAAJ&hl=en


Tutorial

- New concepts and trends of MCDM for Tomorrow: Solving actual problems
- How consider for solving the real world
- Basic concepts of ideas and thinking in trends
- Some examples for the real cases: New hybrid MCDM model
 - MADM DEMATEL, DANP (DEMATEL-based ANP), Integration (Additive: SAW, VIKOR, Grey Relation Analysis, PROMETHEE, ELECTRE; Non-additive: Fuzzy Integral)
 - MODM Changeable Spaces Programming

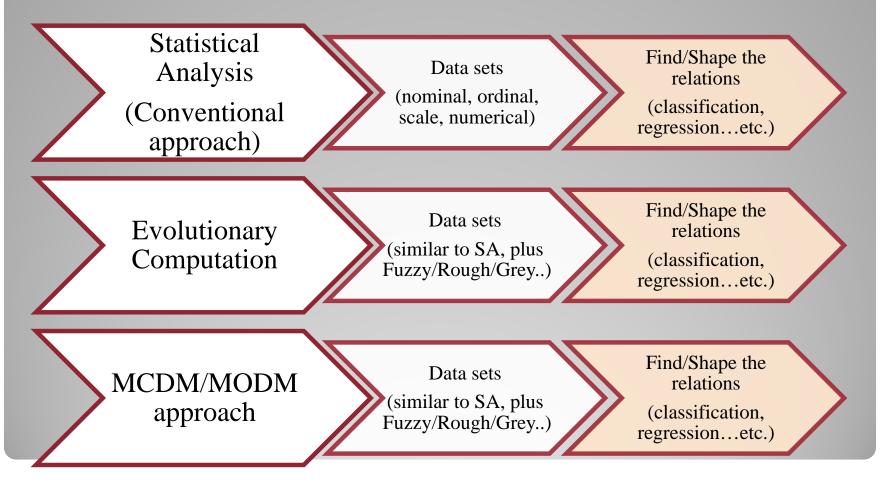
Conclusions

How consider for solving the real world problems

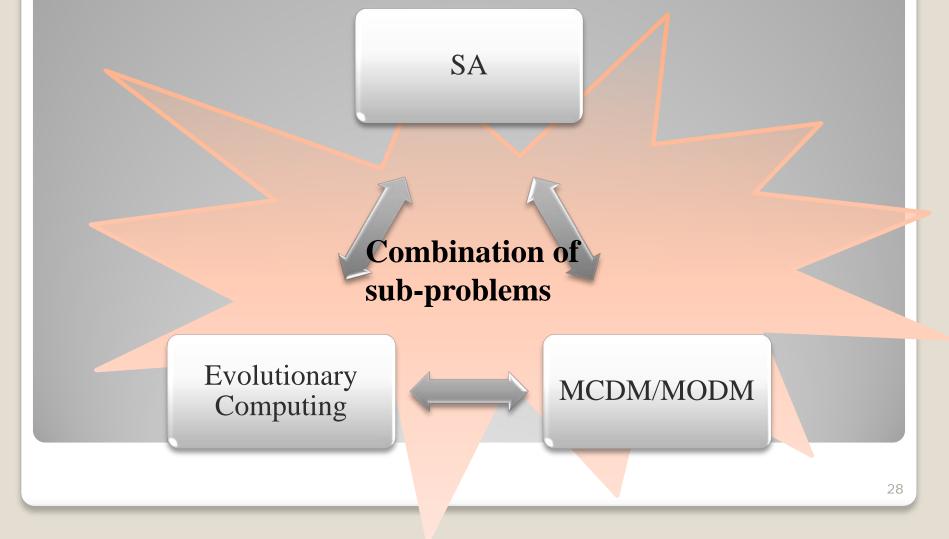
Solving Problems in a real world

Understanding

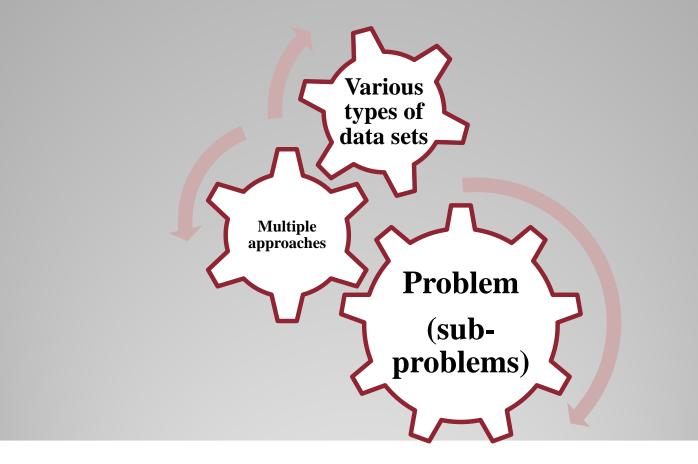
- Observation (experience)
- Intuition/feeling
- Knowledge
- Theory

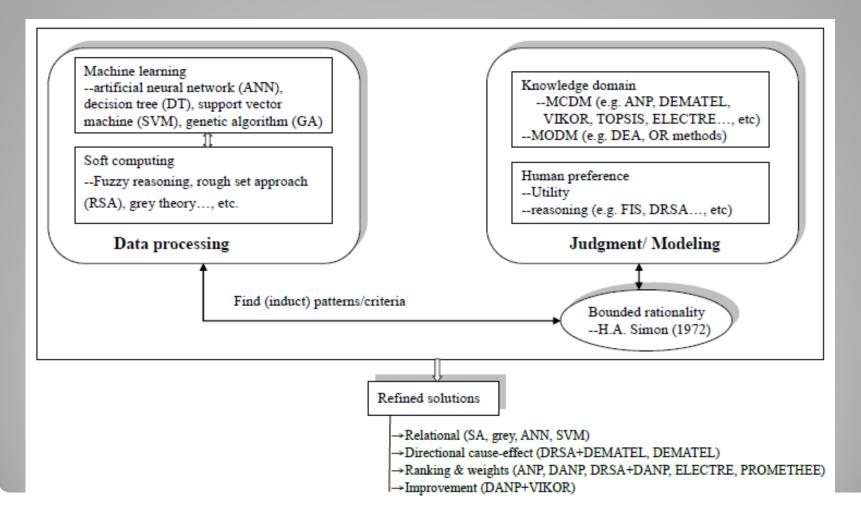

Symbolic notation

- Conceptualize
 - Multiple dimensions
 - Multiple criteria
 - Single or multiple goals
- Define data sets
 - Crisp data sets
 - Fuzzy sets
 - Rough sets
 - Grey Hazy sets


Data sets →Information Systems → Knowledge Discovery
 → Intelligence/Wisdom (→ enlightenment for making the best decision)

Define a problem


Multi paths to reach the end


A new combined/hybrid approach

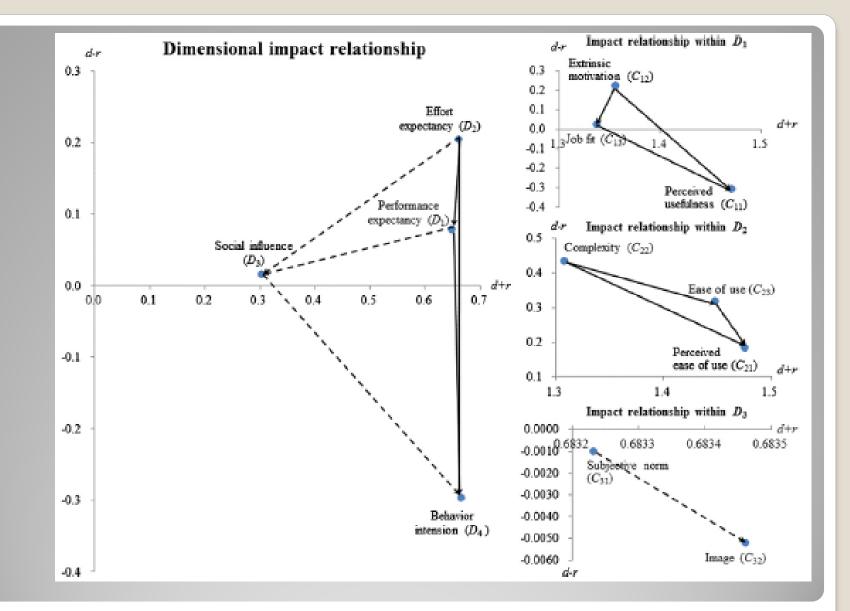
Infusion

Basic Concepts of Recent developments

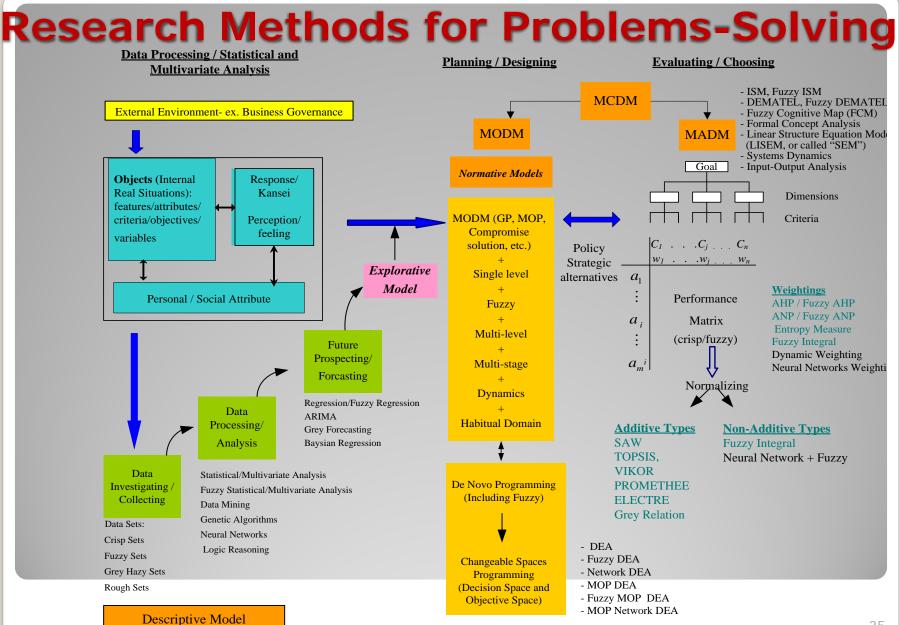
Tutorial

- New concepts and trends of MCDM for Tomorrow: Solving actual problems
- How consider for solving the real world
- Basic concepts of ideas and thinking in trends
- Some examples for the real cases: New hybrid MCDM model
 - MADM DEMATEL, DANP (DEMATEL-based ANP), Integration (Additive: SAW, VIKOR, Grey Relation Analysis, PROMETHEE, ELECTRE; Non-additive: Fuzzy Integral)
 - MODM Changeable Spaces Programming

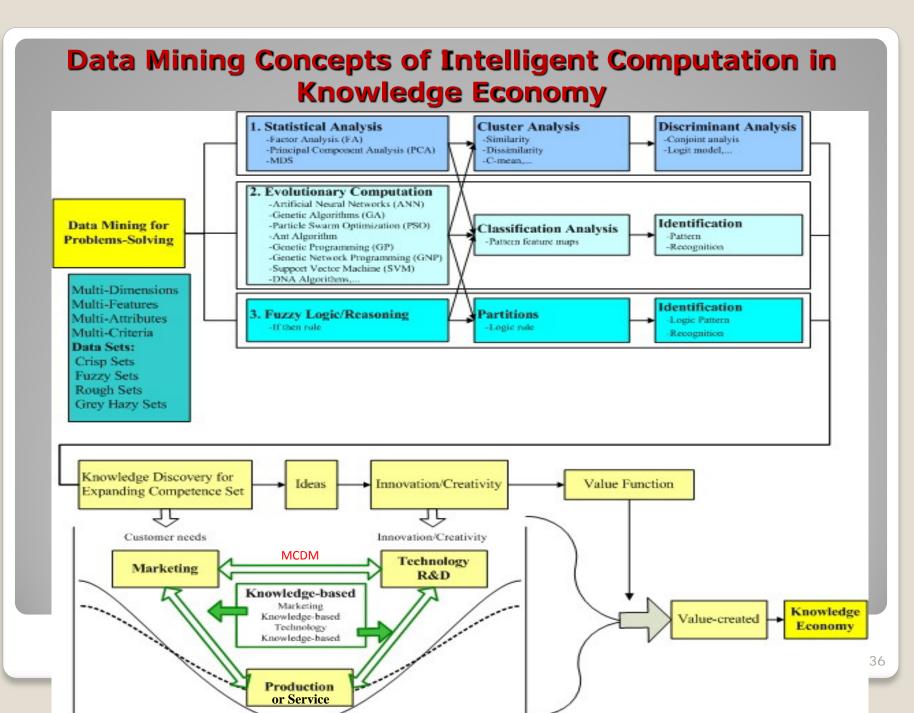
Conclusions

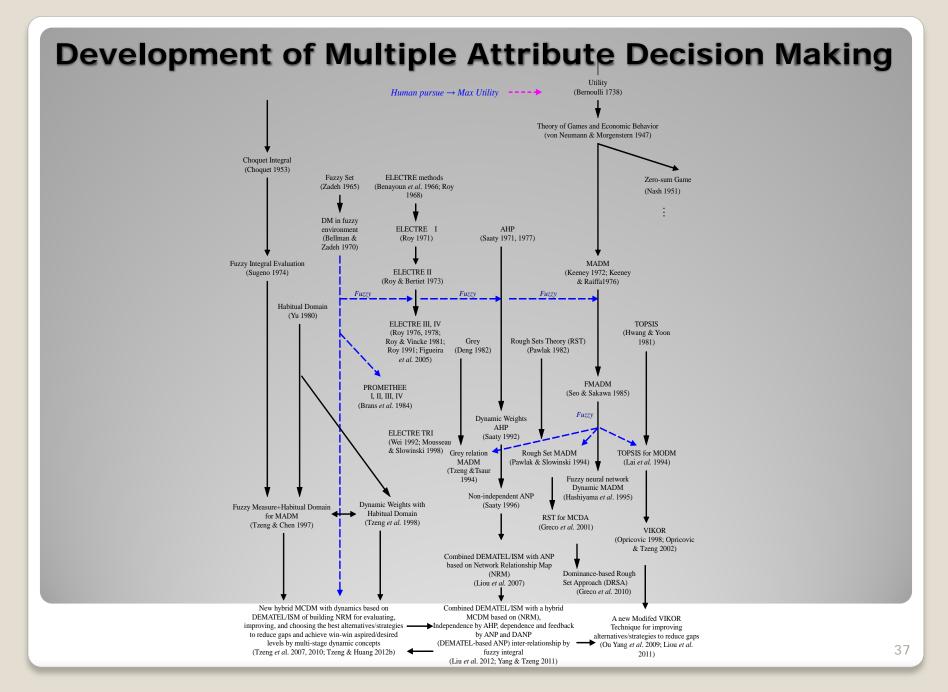

Basic concepts of ideas and thinking in trends

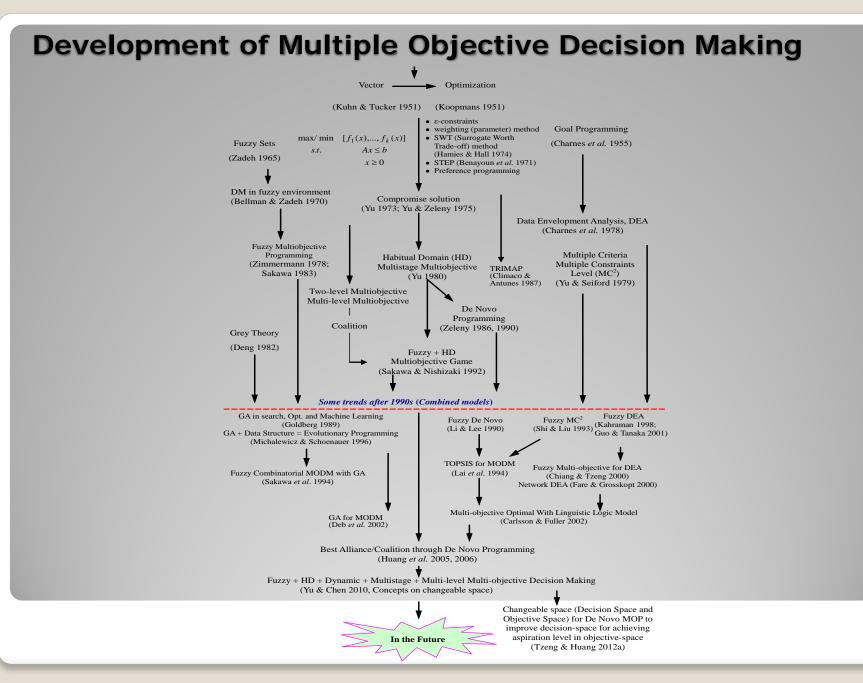
Basic concept of SEM (Structure Equation Modelling) combining DEMATEL technique

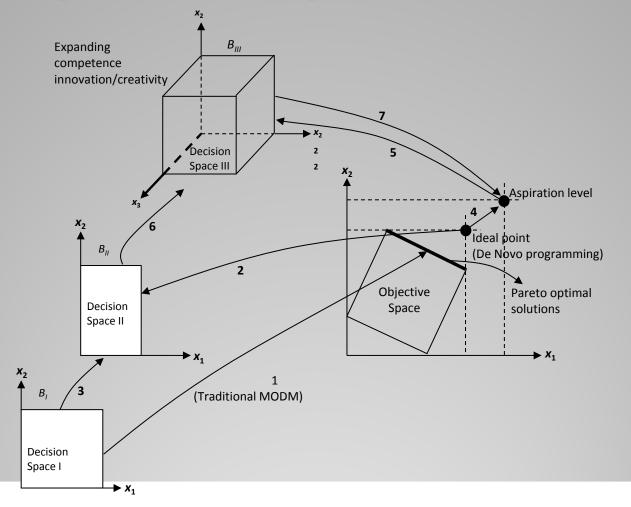


The causal relation map (SEM based on DEMATEL technique


Jeng, D. J.F. and Tzeng, G.H. (2012). Social influence on the use of Clinical Decision Support Systems: Revisiting the Unified Theory of Acceptance and Use of Technology by the fuzzy DEMATEL technique, Computers & Industrial Engineering, 62(3), 819-828




Influential network relation map (INRM) by DEMATEL technique



The concepts of changeable decision space and aspiration level

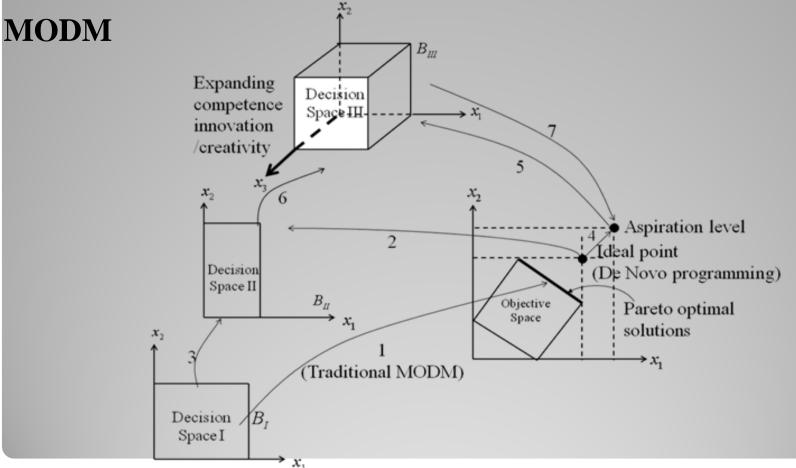
Tutorial

- New concepts and trends of MCDM for Tomorrow: Solving actual problems
- How consider for solving the real world
- Basic concepts of ideas and thinking in trends
- Some examples for the real cases: New hybrid MCDM model
 - MADM DEMATEL, DANP (DEMATEL-based ANP), Integration (Additive: SAW, VIKOR, Grey Relation Analysis, PROMETHEE, ELECTRE; Non-additive: Fuzzy Integral)
 - MODM Changeable Spaces Programming

Conclusions

Some examples for the real cases: New hybrid MCDM model

Hwang and Yoon (1981) classified MCDM problems into two main categories: multiple attribute decision making (MADM) and multiple objective decision making (MODM) (Fig. 2) based on the different purposes and the different data types. MADM applied in the evaluation/improvement/selection, which usually associated with a limited number of predetermined alternatives and the discrete preference ratings in interdependent problems. MODM is especially suitable for the design/planning, which is to achieve the optimal or


aspired goals by considering the various interactions within the given constrains, so that both decision and objective spaces are changeable in new concepts of our research.

- A typical **MADM** is a scientific analytical method for evaluating a set of **criteria/attributes** and **alternatives** based on considering a set of **multiple**, i.e., data set of information systems as, IS = (U, A, V, f).
- However, we find that the traditional MADM ignored some important new concepts and have some assumptions/ hypothesis limit/defects for solving real-world problems; for example, many traditional Economics and Statistics are unrealistic of assumption in the real world, such as assuming independent problem, using coefficients of correlation (not measuring influential relationship among criteria, etc.

MADM

- **First**, the traditional model assumes criteria are **independent** with hierarchical structure; but the **relationships** between criteria or dimensions are usually **interdependent** and sometimes even exit **feedback** effects in the real-world.
- Second, the relative good solution from the existing alternatives is replaced by the aspiration levels to fit today's competitive markets.
- **Third,** the trends have shifted from how can be "ranking" or "selection" the most preferable alternatives to how can be **"improvement**" their performances.
- Fourth, information fusion/aggregation such as fuzzy integral, a nonadditive/super-additive model, has been developed to aggregate the performances.

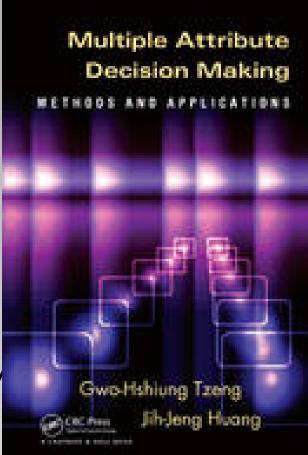
- Why we don't use "traditional Statistics and Economics" approaches: Traditional Statistics and Economics are unrealistic in the real world.
- Setting aspiration level: For avoiding "Choose the best among inferior choices", i.e., for avoiding "Pick the best apple among a barrel of rotten apples".
- Constructing influential network relation map (INRM) for systematic improvement: We need to find a cure to the problem instead of just treating its symptoms; i.e., we need a systematic approach to problem-solving. Instead of addressing the symptoms of the problem, we need to identify the sources of the problem.

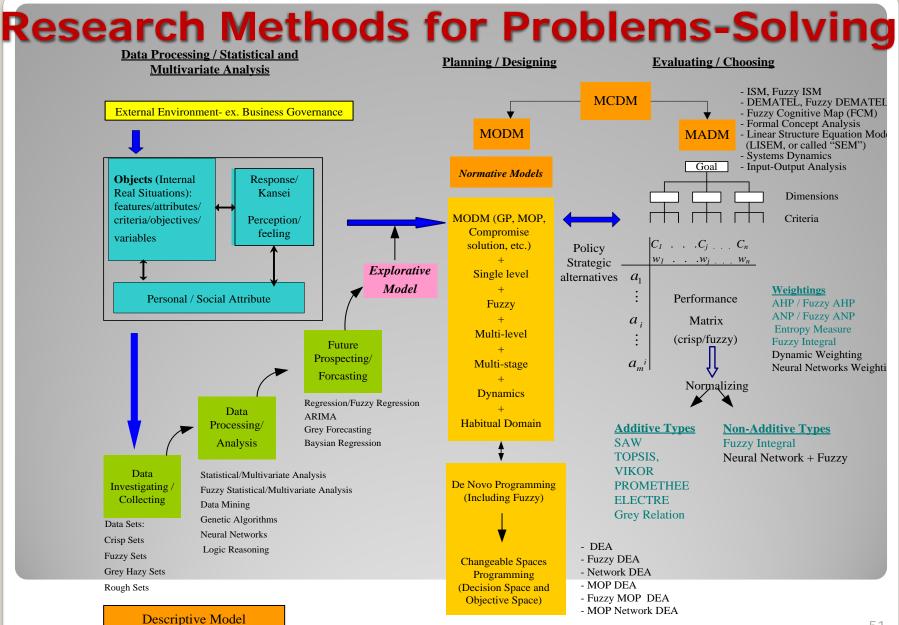
The concept of changeable decision space and aspiration level

- James J.H. Liou, Gwo-Hshiung Tzeng (Corresponding author) (2012), Comments on "Multiple criteria decision making (MCDM) methods in economics: An overview", *Technological and Economic Development of Economy*, 18(4), 672-695 (SSCI, IF: 5.605, 2011; IF: 3.235, 2012).
- Kua-Hsin Peng, Gwo-Hshiung Tzeng (Corresponding author) (2013), A hybrid dynamic MADM model for problems-improvement in economics and business, *Technological and Economic Development of Economy*, Accepted (Forthcoming, SSCI, IF: 5.605, 2011; IF: 3.235, 2012).
- Jih-Jeng Huang, Gwo-Hshiung Tzeng (2013), New thinking of multi-objective programming with changeable space In search of excellence, *Technological and Economic Development of Economy*, Accepted (Forthcoming, SSCI, IF: 5.605, 2011; IF: 3.235, 2012).
- James J.H. Liou, Yen-Ching Chuang, Gwo-Hshiung Tzeng (Corresponding author) (2013) "A fuzzy integral-based model for supplier evaluation and improvement, Information Sciences (Accepted, Impact factor: 3.643, 5-Year Impact Factor: 3.676, 2012).

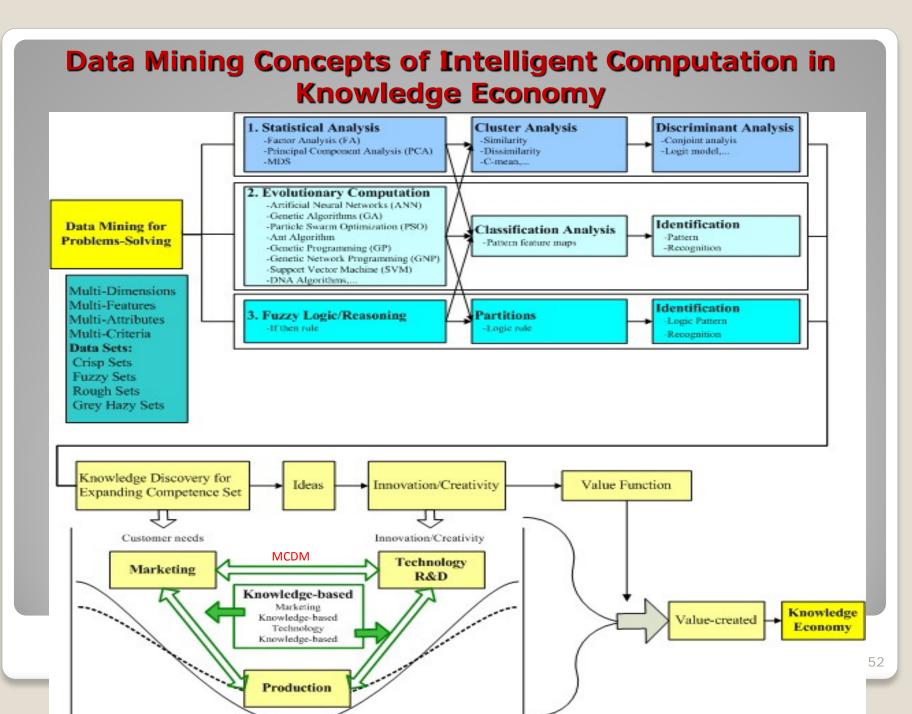
Purposes

The purposes of our proposed these new hybrid MADM methods:


- Not only in order to overcome the defects of conventional MADM method, we have focused on developing a series of new Hybrid
 Dynamic Multiple Attribute Decision Making (HDMADM) method for solving the complication dynamic problem in real world and applying to various fields.
- But also in order to avoid "choose the best among inferior
 choices/options/alternatives, i.e., avoid "Pick the best apple among
 a barrel of rotten apples" and to deal with super-additive/nonadditive problems in the real world. Statistics and economics are
 unrealistic in the real world
- Finally empirical real cases are illustrated to **and effectiveness** of the proposed **new hybrid MADM methods for solving the real world problems**.


Concept of Methods

- **DEMATEL** technique is used to construct the interactions/interrelationship between criteria to build an influential relation map.
- **VIKOR** uses the class distance function (Yu, 1973) based on the concept of the positive-ideal (or the Aspiration level) solution and negative-ideal (or the Worst level) solution and puts the results in order.
- **DANP** (DEMATEL-based ANP) for deriving global influential weights (for solving interdependence and feedback dynamic problems)
- **Fuzzy integral** for integrating (fusing information in performance matrix) of value function (non-additive/super-additive


Research Methods for Problems-Solving

- DEMATEL
- ANP
- DANP (DEMATEL-based ANP)
- VIKOR, Grey Relation Analysis
- Fuzzy Integral (Non-additive/ Super-additive)
- Hybrid MCDM Methods For Problems-solving - Improvement

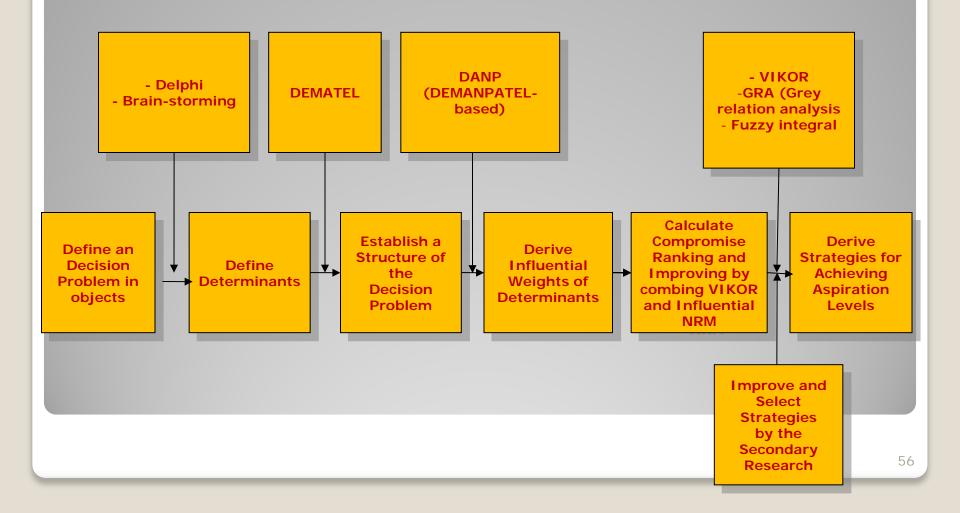
Background A Quick Overview of Traditional MCDM Approaches

- Criteria weight calculations by AHP (assuming criteria independences) or
- ANP based weight derivations by a decision problem structure being derived arbitrarily (based on assumption, Saaty)
- TOPSIS which determines a solution with
 - The shortest distance from the ideal solution and
 - The farthest distance from the negative-ideal solution (cannot be used for **ranking purpose**)
 - Opricovic, S., Tzeng, G.H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPISIS, European Journal of Operational Research, Volume 156, Issue 2, 16 July 2004, Pages 445-455 (Essential Science Indicatorssm to be one of the most cited papers in the field of Economics).

Background - Problems being Faced by Traditional MCDM Approaches

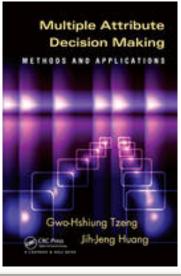
Alternatives being derived as is

- Wrong assumptions on the **independences** between the determinants (very few exists in the real world)
- Vague correlations between criteria (such as, SEM, etc., improved by using DEMATEL technique)
- The lack of priorities of the alternatives (improvement is more important)
- Compromise solutions being derived (e.g. by TOPSIS) is not always the closest to the ideal


(cannot be used for **ranking purpose**)

"Rotten (decay, not good) apples versus rotten apples" situation

Purpose


- For satisfying the real world MADM problems, the above mentioned problems should be corrected
 - A proposal of novel hybrid MADM framework is essential in my books and my publication papers of our research group

Research Methods Combined DEMATEL Technique with a Hybrid Novel MCDM Method for applying the real case

DEMATEL -Decision Making Trial and Evaluation Laboratory

New Methods

Introduction (1)

- The DEMATEL method was developed by the Battelle Geneva Institute to
 - Analyze complex "world problems" dealing mainly with interactive manmodel techniques in complex social systems (Gabus and Fontela, 1972) for improving traditional "System Dynamics" by Forester" (in 1960-1970s), then we use this basic concepts for using to evaluate qualitative and factor-linked aspects of social problems by natural language.
 - We, also based on these concepts, develop a series of novel hybrid MADM model, such as Liou et al. (2007), Tzeng et al. (2007); Ou Yang, et al. (2008), Liu et al. (2012) and so on.
- The applicability of the method can be widespread
 - Industrial planning and improvement
 - Decision-making to transportation planning, urban planning and design
 - Regional environmental assessment
 - Analysis of world problems
 - Social network analysis, and
 - Others

Introduction (2)

The DEMATEL method is based upon graph theory

- Enabling us to plan and solve complex problems visually
 - We may divide multiple criteria into a cause and effect group, in order to better understand causal relationships and build influential network relationship map (NRM) in interdependence and feedback problems for improving the gaps of criteria to achieve aspiration levels in satisfaction. [Solving and treating the basic concepts proposed by Herbert Simon, 1978 Nobel Prize]

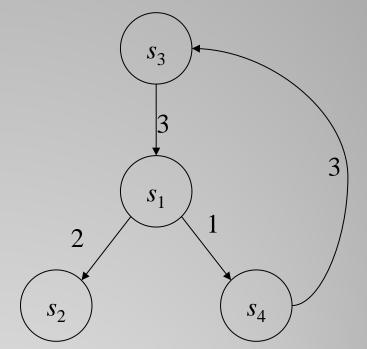
Relation Graphs (1)

- Directed, in-directed, and total relation graphs (also called digraphs) are more useful than directionless graphs
 - Digraphs (such as SEM model etc.) will demonstrate the directed, in-directed and total relationships of sub-systems, but based on Hypotheses.
- A digraph typically represents a communication network, or a domination relationship between individuals, etc.

Suppose a system contains a set of elements, $S = \{s_1, s_2, ..., s_n\}$, and particular pair-wise relationships are determined for modeling, with respect to a mathematical relationship, **MR**.

Relation Graphs (2)

- Next, portray the relationship MR as a relation matrix that is indexed equally in both dimensions by elements from the set S by directed relation graph. Then, extract the case for which the number 0 (completely no influence) to 4 (extremely or very high influence) appears in the cell (i,j) by directed relation graph, if the entry is a positive integral that has the meaning of:
 - the ordered pair (s_i, s_j) is in the relationship **MR**;
 - it has the kind of relationship regarding that element such that s_i causes element s_i.


Relation Graphs (3)

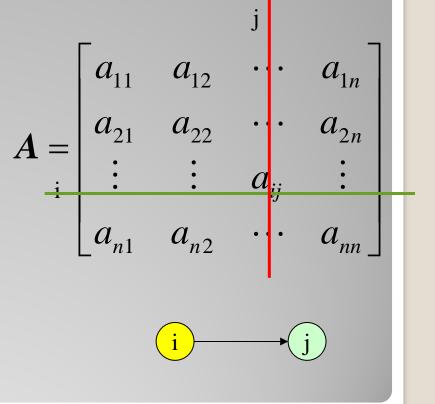
- The number between factors is influence or influenced degree.
- The DEMATEL method can convert the relationship between the causes and effects of criteria into an intelligible structural model of the system

Relation Graphs (4)

Directed Relation Graph

- The elements, S₁, S₂, S₃ and S₄ represent the factors that have relationships in the digraph.
- The number between factors is influence or influenced degree.
 - For example, an arrow from S₁ to S₂ represents the fact that influences and its influenced degree is two.

Definitions (1)


Definition 1

 The pair-wise comparison scale may be designated as eleven levels, where the scores, such as 'completely no influence (0),' 'low influence (1),' 'medium influence (2),' 'high influence (3),' and 'very high influence (4),' respectively (or 0, 1, 2, 3, 4 or 0, 1, 2,..., 10) represent the range from 'no influence' to 'very high influence'.

Definitions (2)

Definition 2

 The initial direct relation/influence matrix A is an $n \times n$ matrix obtained by pair-wise comparisons, in terms of influences and directions between the criteria, in which a_{ii} is denoted as the degree to which the *i*th criteria affects the j^{th} criteria.

Definitions (3)

Definition 3

• The normalized direct relation/influence matrix X can be obtained through Equations (1) and (2) by normlization, in which all principal diagonal elements are equal to zero.

$$N = sA \tag{1}$$

where

$$s = 1 / \max\left\{ \max_{1 \le i \le n} \sum_{j=1}^{n} a_{ij}, \max_{1 \le j \le n} \sum_{i=1}^{n} a_{ij} \right\}$$
(2)

In this case, X is called the normalized matrix. Since

$$\lim_{g\to\infty} X^g = [0]$$

Definitions (4)

Definition 4

• Then, the total relationship matrix *T* can be obtained using Equation (3), where *I* stands for the identity matrix.

$$T = X + X^{2} + ... + X^{g}$$

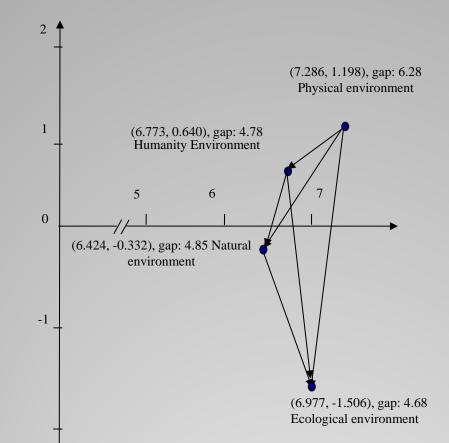
$$= X (I + X + ... + X^{g-1})[(I - X)(I - X)^{-1}]$$

$$= X (I - X^{g})(I - X)^{-1}$$
then, $T = X(I - X)^{-1}$, $\lim_{g \to \infty} X^{g} = [0]$ when $g \to \infty$ (3)
• where $X = [x_{ij}]_{n \times n}$, $0 \le x_{ij} < 1$, $0 < \sum_{j=1}^{n} x_{ij} \le 1$ and $0 < \sum_{i=1}^{n} x_{ij} \le 1$,
• If at least one row or column of summation, but not all, is equal to 1, then $\lim_{g \to \infty} X^{g} = [0]$ and T is a total influence-related matrix; matrix X is a direct influence matrix and
• matrix $(X + X^{2} + ... + X^{g})$ stands for a indirect influence matrix. The (i,j) element t_{ij} of matrix T denotes the direct and indirect influences of factor i on factor j .

Definition (5) Definition 5 • The row and column sums are separately denoted as vector r and vector c within the total-relation matrix T through Equations (4), (5), and (6). $T = [t_{ii}], i, j \in \{1, 2, ..., n\}$ (4) $\boldsymbol{r} = [r_i]_{n \times 1} = \left| \sum_{i=1}^n t_{ij} \right|$ (5) $\boldsymbol{d} = [\boldsymbol{d}_j]_{n \times 1} = \left[\sum_{i=1}^n t_{ij}\right]'$ (6)

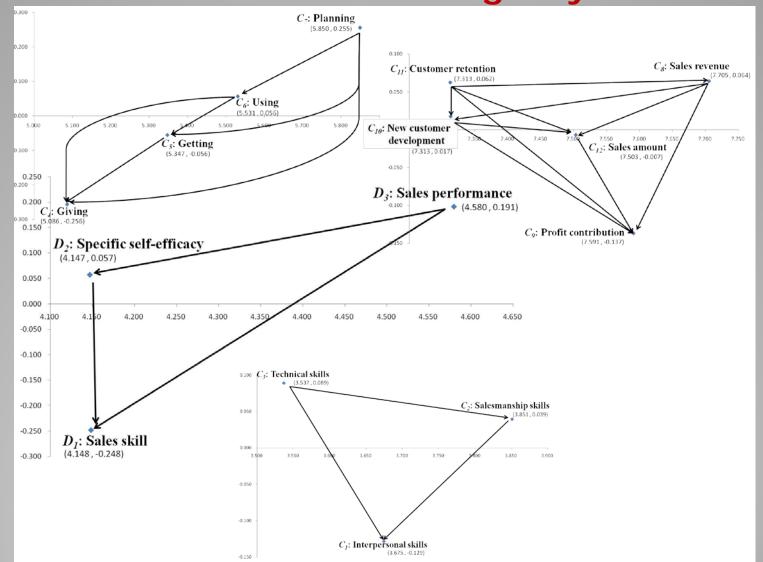
where the vector *r* and vector *d* vectors denote the sums of the rows and columns, respectively.

Definition 6

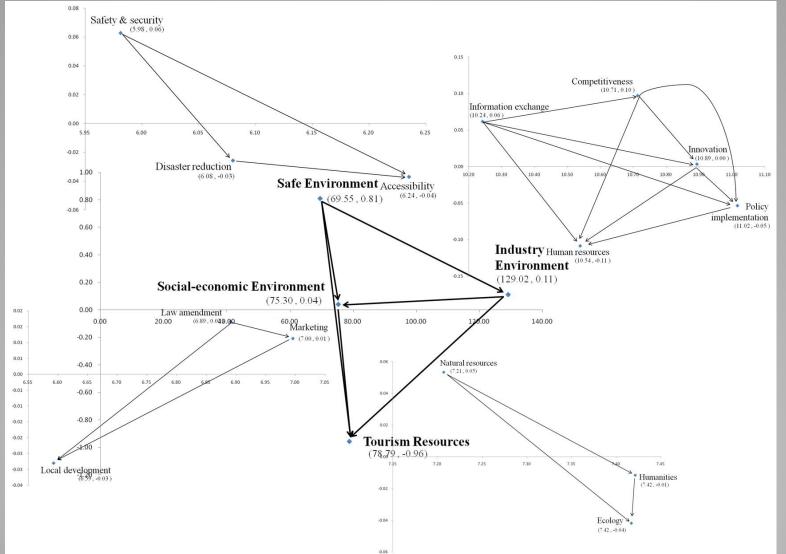

• Definition 6

• Suppose r_i denotes the row sum of the i^{th} row of matrix T. Then, r_i is the sum of the influences dispatching from factor i to the other all factors, both directly and indirectly. Suppose that d_j denotes the j^{th} column sum of the column of matrix T. Then, d_j is the sum of the influences that factor j is received from the other all factors.

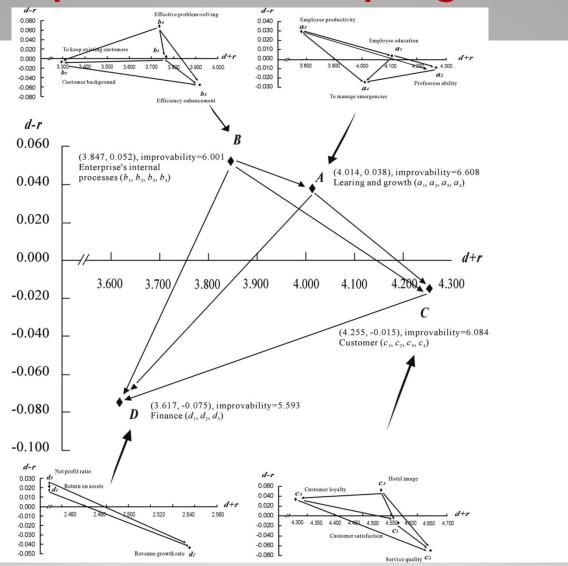
Definition 6 (Continued)


- Furthermore, when *i=j* (i.e., the sum of the row sum and the column sum (*r_i+d_j*) represents the index representing the strength of the influence, both dispatching and received), (*r_i+d_j*) is the degree of the central role that factor *i* plays in the problem.
- If $(r_i d_j)$ is positive, then factor primarily is dispatching influence upon the other factors; and if $(r_i d_j)$ is negative, then factor primarily is received influence from other factors (Tamura et al., 2002; Tzeng et al., 2007; etc.).

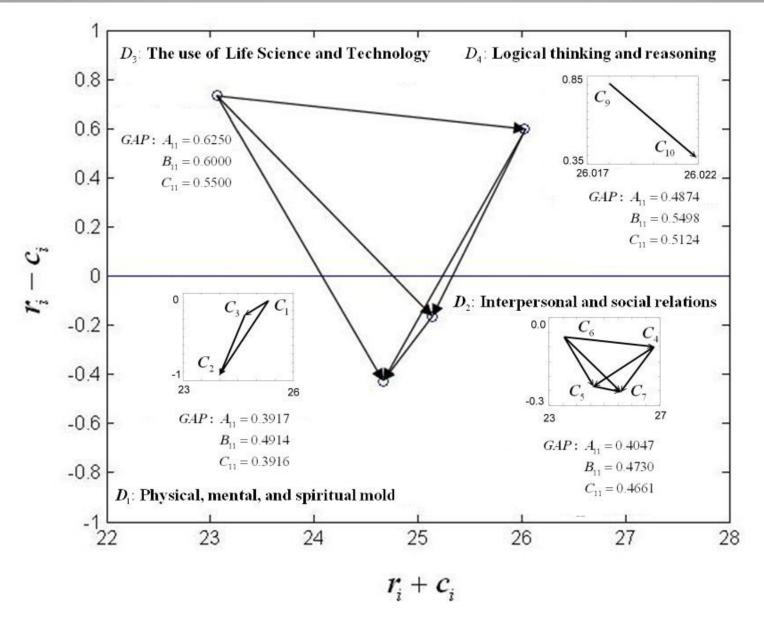
Example 1: For improving wetland environments


The impact-direction map for improving gaps in performance values Chen, Y.C., Lien, H. P., Tzeng, G.H. (2010), Measures and evaluation for environment watershed plan using a novel hybrid MCDM model, *Expert Systems with Applications*, 37(2), *926-938*

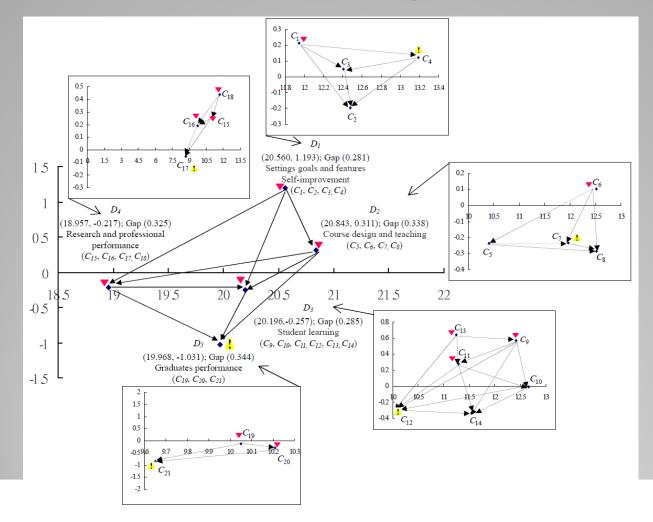
Example 2: Strategies for improving cruise product sales in the travel agency


Liu, C. H., Tzeng, G.H., Lee, M.H. (2011), Strategies for improving cruise product sales in the travel agency- using hybrid MCDM models, The Service Industry Journal (Forthcoming).

• Example 3: For improving tourism policy implementation


Liu, C.H., Tzeng, G.H., Lee, M.H. (2011), Improving tourism policy implementation - the use of hybrid MCDM models, Tourism Management (Accepted)

Establish a Performance Evaluation and Relationship Model for Hot Spring Hotels


Chen, F.H., Hsu,T.S., Tzeng, G.H. (2011), A Balanced Scorecard Approach to Establish a Performance Evaluation and Relationship Model for Hot Spring Hotels Based on a Hybrid MCDM Model Combining DEMATEL and ANP, International Journal of Hospitality Management, 30(4), 908-932.

Assessment Systems for Teaching Materials: Case of Mandarin Chinese

Chen, C.H. and Tzeng, G.H. (2011), Creating the Aspired Intelligent Assessment Systems for Teaching Materials, *Expert Systems with Applications*, 38(10), 12168-12179.

For improve accreditation performance in higher education

Analytic Network Process (ANP) and DANP (DEMATEL-based ANP)

DANP (DEMATEL-based ANP) based on DEMATEL technique to build network relationship map (NRP) for constructing Super-matrix using the basic concept of ANP to find the influential weights (called DANP) Multiple Attribute Decision Making METRODS AND APPELICATIONS Gwo-Hishiung Tzeng Gwo-Hishiung Tzeng Jih-Jeng Huang

Source: Tzeng (2006)

Introduction (1)

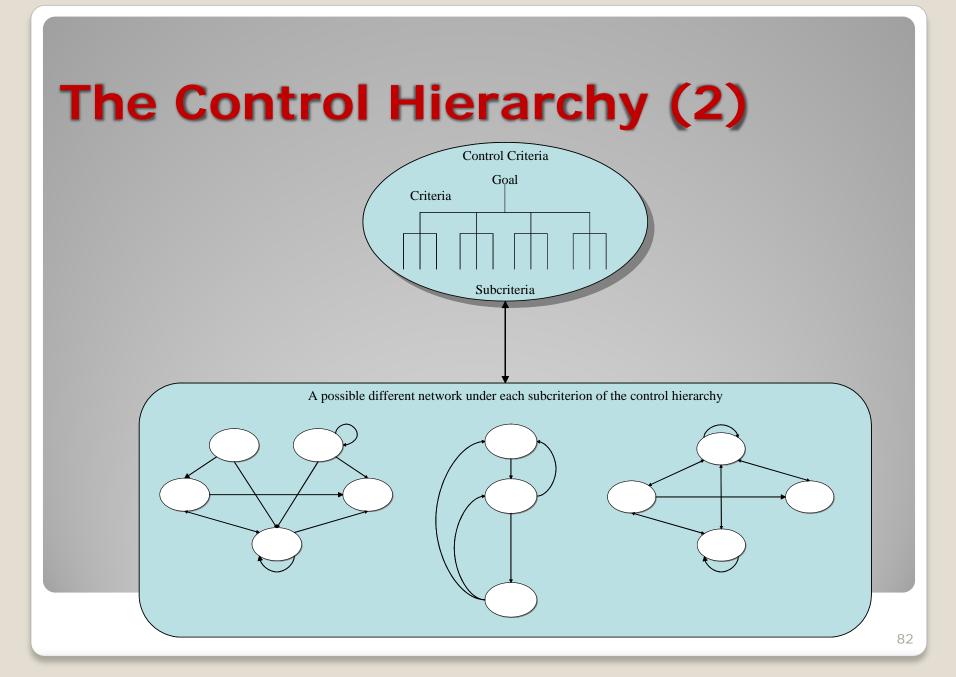
The ANP method

- A multi-criteria theory of measurement proposed by Saaty (1996).
- Provides a general framework to deal with
 - Decisions without making assumptions about the independence of higher-level elements from lower level elements
 - About the independence of the elements within a level as in a hierarchy.
 - [i.e., between each dimension is dependent, but criteria within dimension are independent]

Introduction (2)

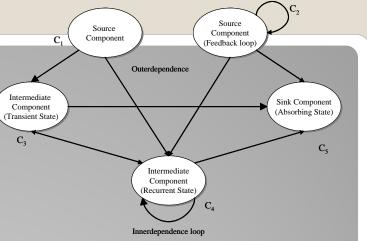
- Compared with traditional MCDM methods, ANP is a more reasonable tool for dealing with complex MCDM problems in the real world.
 - Traditional MCDM methods usually assume the independence between criteria.
 - ANP extends AHP to deal with dependence in feedback and utilizes the super-matrix approach.

Introduction (3)


• The ANP is a coupling of two parts.

- The first consists of a control hierarchy or network of criteria and subcriteria that control the interactions.
- The second is a network of influences among the elements and clusters.
 - The network varies from criterion to criterion
 - A different supermatrix of limiting influence is computed for each control criterion.

 Each of these super-matrices is weighted by the priority of its control criterion and the results are synthesized through addition for all the control criteria.


The Control Hierarchy (1)

- A control hierarchy is a hierarchy of criteria and subcriteria for which priorities are derived in the usual way with respect to the goal of the system being considered.
 - The criteria are used to compare the components of a system, and
 - The subcriteria are used to compare the elements.
 - The criteria with respect to which influence is presented in individual supermatrices are called control criteria.

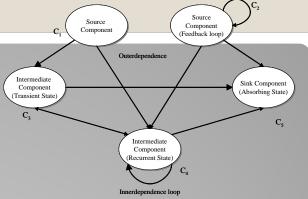
The Network (1)

- A network connects the components of a decision system.
- According to size, there will be a system that is made up of subsystems, with each subsystem made up of components, and each component made up of elements.
- The elements in each component interact or have an influence on some or all of the elements of another component with respect to a property governing the interactions of the entire system, such as energy, capital, or political influence.

The Network (2)

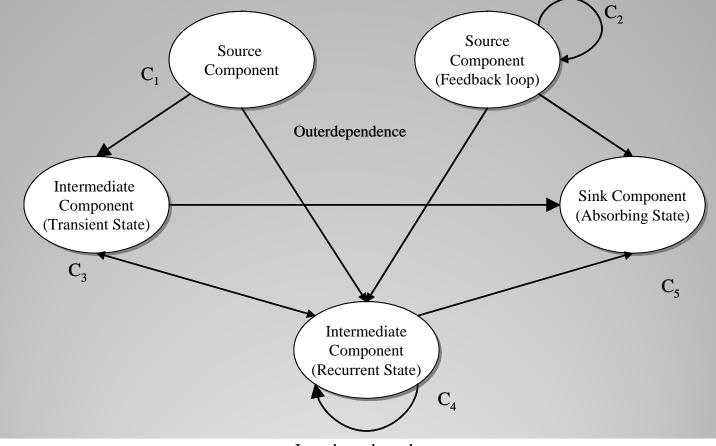
- Source component
 - Those components which no arrow enters are known as source components. E.g. C_1 and C_2 .

Sink component


 Those from which no arrow leaves are known as sink component. E.g. C₅.

Transient component

• Those components which arrows both enter and exit leave. E.g. C_3 and C_4 .


The Network (3)

Cycle

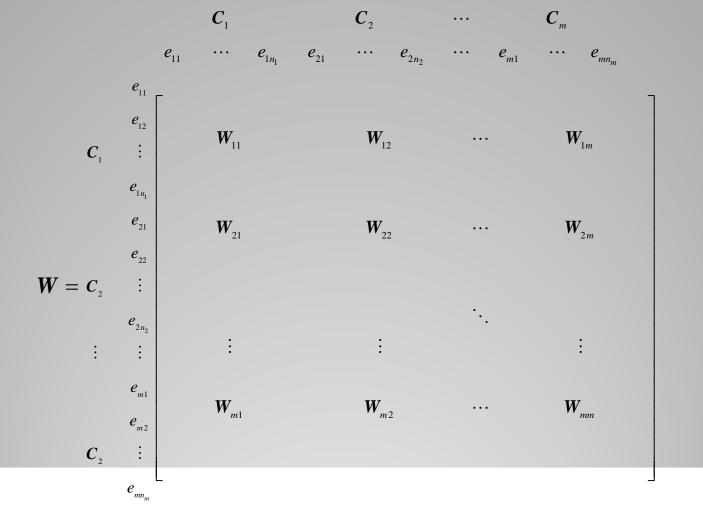
- A cycle of components is formed when the components feed back and forth into each other.
 E.g. C₃ and C₄.
- Loop
 - A loop connect to a component itself and is inner dependent. E.g.. C₂ and C₄ have loops that connect them to themselves and are inner dependent.
- Outer dependent
 - Other connections represent dependence between components which are thus known to be outer dependent.

The Network (4) A Typical Example

Innerdependence loop

The Super-matrix (1)

- A component of a decision network will be denoted by C_h, h =1,2,...,m, and assume that it has n_h elements, which we denote by e_{h1}, e_{h2},..., e_{hm}.
- The influences of a given set of elements in a component on any element in the decision system are represented by a ratio scale priority vector derived from pair-wise comparisons of the relative importance of one criterion and another criterion with respect to the interests or preferences of the decision-makers.


The Super-matrix (2)

- This relative importance value can be determined using a scale of 1 – 9 to represent equal importance to extreme importance.
- The influence of elements in the network on other elements in that network can be represented in the following supermatrix:

The Super-matrix (3)

• A typical entry *Wij* in the supermatrix, is called a block of the supermatrix in the following form where each column of Wij is a principal eigenvector of the influence of the elements in the *ith* component of the network on an element in the *jth* component. Some of its entries may be zero corresponding to those elements that have no influence.

The Supermatrix (4)

90

DEMATEL based Analytic Network Process (DANP)

New method Hybrid MCDM model

Decision Making METHODS AND APPLICATIONS Gwo-Hshiung Tzeng Jih Jeng Huang

Multiple Attribute

- DEMATEL-based Analytic Network Process (DANP) (1/14)

The DANP is proposed by Pro. Tzeng, which is composed of DEMATEL technique and ANP concept.

DEMATEL based Analytic Network Process (DANP) (2/14)

The DEMATEL technique was developed by the Battelle Geneva Institute:

- (1) to analyze complex "real world problems" dealing mainly with interactive map-model techniques (Gabus & Fontela, 1972).
- (2) to evaluate qualitative and factor-linked aspects of societal problems.

DEMATEL based Analytic Network Process (DANP) (3/14)

➤The ANP method, a multi criteria theory of measurement developed by Saaty (Saaty, 1996) provides a general framework to deal with decisions without making assumptions about the independence of higher-level elements from lower level elements and about the independence of the elements within a level as in a hierarchy.

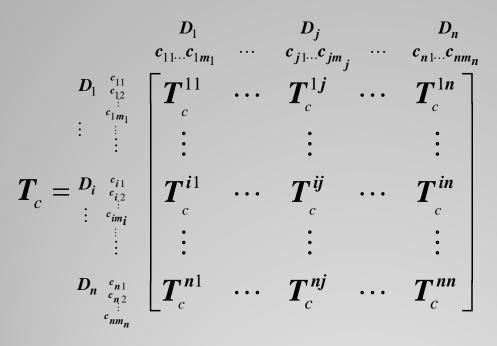
DEMATEL based Analytic Network Process (DANP) (4/14)

Step1: Calculate the direct-influence matrix by scores. Lead users and experts are asked to indicate the direct effect they believe a factor will have on factor, as indicated by. The matrix D of direct relations can be obtained.

Step2: Normalize the direct-influence matrix based on the direct-influence matrix D by the equation:

$$N = vD; v = \min\{1/\max_{i} \sum_{j=1}^{n} d_{ij}, 1/\max_{j} \sum_{i=1}^{n} d_{ij}\}, i, j \in \{1, 2, ..., n\}$$

DEMATEL based Analytic Network Process (DANP) (5/14)


Step3: Attaining the total-influence matrix *T* by calculating this equation: $T = N + N^2 + ... + N^h = N(I - N)^{-1}$, when $h \to \infty$

> Step4: The row and column sums are separately denoted as and within the total-relation matrix through equations:

$$\boldsymbol{T} = [t_{ij}], \quad i, j \in \{1, 2, \dots, n\}$$
$$\boldsymbol{r} = [r_i]_{n \times 1} = \left[\sum_{j=1}^n t_{ij}\right]_{n \times 1} \quad \boldsymbol{c} = [c_j]_{1 \times n} = \left[\sum_{i=1}^n t_{ij}\right]_{1 \times n}$$

DEMATEL based Analytic Network Process (DANP) (6/14)

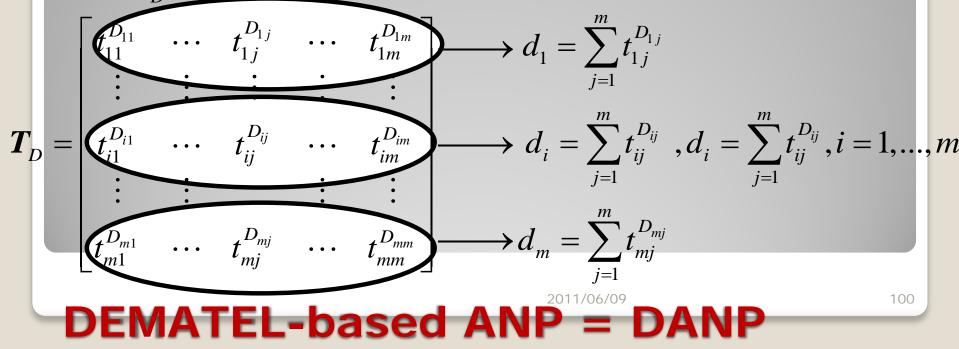
Total relationship matrix T can be measured by criteria, shown as T_c

DEMATEL based Analytic Network Process (DANP) (7/14)

Step 5: Normalize T_c with the total degree of effect and obtain T_c^{α}

$$T_{C}^{\alpha} = \begin{bmatrix} D_{1} & D_{j} & D_{n} \\ c_{11} \dots c_{1m_{1}} \dots & c_{j1} \dots c_{jm_{j}} & \cdots & c_{n1} \dots c_{nm_{n}} \\ \vdots & \vdots & \vdots \\ c_{1m_{1}} & \vdots & \vdots & \vdots \\ \vdots & c_{1m_{1}} & \vdots & \vdots & \vdots \\ \vdots & c_{1m_{1}} & \vdots & \vdots & \vdots \\ \vdots & c_{1m_{1}} & \vdots & \vdots & \vdots \\ T_{c}^{\alpha 11} & \cdots & T_{c}^{\alpha 1j} & \cdots & T_{c}^{\alpha 1n} \\ \vdots & \vdots & \vdots & \vdots \\ T_{c}^{\alpha n1} & \cdots & T_{c}^{\alpha nj} & \cdots & T_{c}^{\alpha nn} \\ \vdots & \vdots & \vdots & \vdots \\ T_{c}^{\alpha n1} & \cdots & T_{c}^{\alpha nj} & \cdots & T_{c}^{\alpha nn} \\ \end{bmatrix}$$

- DEMATEL based Analytic Network Process (DANP) (8/14)


>According to the result of step 4

 $(r_i + c_i)$ represents the index representing the strength of the influence, both dispatching and receiving, it is the degree of the central role that factor plays in the problem.

>If $(r_i - c_i)$ is positive, then factor primarily is dispatching influence upon the strength of other factors; and if $(r_i - c_i)$ is negative, then factor primarily is receiving influence from other factors (Huang et al., 2007; Liou et al., 2007; Tamura et al., 2002).

DEMATEL based Analytic Network Process (DANP) (9/14)

Now we call the total-influence matrix $T_C = [t_{ij}]_{nxn}$ obtained by criteria and $T_D = [t_{ij}^D]_{nxn}$ obtained by dimensions (clusters) from T_C . Then we normalize the unweighted supermatrix W based on weights of dimensions (clusters) by using the normalized influence matrix T_D .

DEMATEL based Analytic Network Process (DANP) (11/14)

Step 6: normalize the total-influence matrix and represent it as T_D

$$\boldsymbol{T}_{D}^{\alpha} = \begin{bmatrix} t_{11}^{D_{11}} / d_{1} & \cdots & t_{1j}^{D_{1j}} / d_{1} & \cdots & t_{1m}^{D_{1m}} / d_{1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ t_{i1}^{D_{i1}} / d_{i} & \cdots & t_{ij}^{D_{ij}} / d_{i} & \cdots & t_{im}^{D_{im}} / d_{i} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ t_{m1}^{D_{m1}} / d_{m} & \cdots & t_{mj}^{D_{mj}} / d_{m} & \cdots & t_{mm}^{D_{mm}} / d_{m} \end{bmatrix} = \begin{bmatrix} t_{D}^{\alpha 11} & \cdots & t_{D}^{\alpha 1j} & \cdots & t_{D}^{\alpha 1n} \\ \vdots & \vdots & \vdots & \vdots \\ t_{D}^{\alpha n1} & \cdots & t_{Dj}^{\alpha nj} & \cdots & t_{mm}^{\alpha nn} / d_{m} \end{bmatrix}$$

 $\mathbf{E}\mathbf{M}\mathbf{A}\mathbf{I}\mathbf{E}\mathbf{L}$ -Dased $\mathbf{A}\mathbf{N}\mathbf{P} = \mathbf{D}\mathbf{A}\mathbf{N}\mathbf{I}$

2011/06/09

DEMATEL based Analytic Network Process (DANP) (12/14)

Step 7: Calculate the unweighted supermatrix W based on T_c^{α} .

$$\boldsymbol{W} = (\boldsymbol{T}_{c}^{\alpha})' = \begin{bmatrix} D_{1} & D_{i} & D_{n} \\ D_{1} & c_{11} & \cdots & c_{i1} \dots c_{im_{i}} & \cdots & c_{n1} \dots c_{nm_{n}} \\ \vdots & c_{1m_{1}} & \vdots & \vdots & \vdots \\ \vdots & c_{1m_{1}} & \vdots & \vdots & \vdots & \vdots \\ \vdots & c_{1m_{1}} & \vdots & \vdots & \vdots & \vdots \\ \vdots & c_{1m_{1}} & \vdots & \vdots & \vdots & \vdots \\ \boldsymbol{W}^{1j} & \cdots & \boldsymbol{W}^{ij} & \cdots & \boldsymbol{W}^{nj} \\ \vdots & \vdots & \vdots & \vdots \\ \boldsymbol{W}^{1j} & \cdots & \boldsymbol{W}^{in} & \cdots & \boldsymbol{W}^{nn} \end{bmatrix}$$

DEMATEL based Analytic Network Process (DANP) (13/14)

Step 8: Calculate the weighted supermatrix W^{α} .

$$\boldsymbol{W}^{\alpha} = \boldsymbol{T}_{D}^{\alpha} \boldsymbol{W} = \begin{bmatrix} \boldsymbol{t}_{D}^{\alpha 11} \times \boldsymbol{W}^{11} & \cdots & \boldsymbol{t}_{D}^{\alpha i1} \times \boldsymbol{W}^{i1} & \cdots & \boldsymbol{t}_{D}^{\alpha n1} \times \boldsymbol{W}^{n1} \\ \vdots & \vdots & \vdots \\ \boldsymbol{t}_{D}^{\alpha 1j} \times \boldsymbol{W}^{1j} & \cdots & \boldsymbol{t}_{D}^{\alpha ij} \times \boldsymbol{W}^{ij} & \cdots & \boldsymbol{t}_{D}^{\alpha nj} \times \boldsymbol{W}^{nj} \\ \vdots & \vdots & \vdots \\ \boldsymbol{t}_{D}^{\alpha 1n} \times \boldsymbol{W}^{1n} & \cdots & \boldsymbol{t}_{D}^{\alpha in} \times \boldsymbol{W}^{in} & \cdots & \boldsymbol{t}_{D}^{\alpha nn} \times \boldsymbol{W}^{nn} \end{bmatrix}$$


DEMATEL based Analytic Network Process (DANP) (14/14)

Step 9: Limit the weighted super-matrix by raising it to a sufficiently large power *z*, as this equation, until the super-matrix has converged and become a long-term stable super-matrix to get the global priority influential vectors or called DANP influential weights.

 $\lim_{z\to\infty} (\boldsymbol{W}^{\alpha})^z$

VIKOR mothod -Minimize average gaps for all dimensions/criteria and improve the maximal gaps for priority improvement based on influential network relation map

New Methods

VIKOR method (1)

 The rating performance scores are normalised by the best value and the worst value; for example, the scale performance scores from 0 (the worst value, $f_i = 0$ to 10 (the best value, called the aspiration level, $f_i^* = 10$, and the scores of the criterion are denoted by f_{ki} for an alternative as gap. The new VIKOR is more appropriate to the analysis of real-world situations. These models can be used to resolve other real business questions.

VIKOR method (2)

Development of the VIKOR method began with the following form of L_{p} -metric:

$$L_{k}^{p} = \left\{ \sum_{j=1}^{n} \left[w_{j} \left(\left| f_{j}^{*} - f_{kj} \right| \right) / \left(\left| f_{j}^{*} - f_{j}^{-} \right| \right) \right]^{p} \right\}^{1/p}$$

where $1 \le p \le \infty$; k = 1, 2, ..., m and influential weight w_j is derived from the DANP. To formulate the ranking and gap measure L_k^{p-1} (as S_k) and $L_k^{p-\infty}$ (as Q_j) are used by VIKOR method (Tzeng et al., 2002, 2005; Opricovic and Tzeng, 2002, 2004, 2007).

$$S_{k} = L_{k}^{p-1} = \sum_{j=1}^{n} [w_{j}(|f_{j}^{*} - f_{kj}|)/(|f_{j}^{*} - f_{j}^{-}|)]$$
$$Q_{k} = L_{k}^{p-\infty} = \max_{j} \{ (|f_{j}^{*} - f_{kj}|)/(|f_{j}^{*} - f_{j}^{-}|) | j = 1, 2, ..., n \}.$$

VIKOR method (3)

- The new VIKOR method consists of the following:
- Step 1: Finding the normalised gap.

 $r_{kj} = (|f_j^* - f_{kj}|) / (|f_j^* - f_j^-|)$

 Step 2: Computing the gap for minimal and the maximal gap for priority improvement.

$$S_k = L_k^{p=1} = \sum_{j=1}^n w_j \times r_{kj}, \qquad \forall k$$

$$Q_k = L_k^{p=\infty} = \max_j \{r_{kj} | j = 1, 2, \dots, n\}, \qquad \forall k$$

VIKOR method (4)

Step 3: Obtaining the comprehensive indicator

Based on the above concepts, the comprehensive indicator of the compromise VIKOR can be written as follow.

$$R_k = v(S_k - S^*) / (S^- - S^*) + (1 - v)(Q_k - Q^*) / (Q^- - Q^*)$$

Then, based on the concept above, the best situation, when $S^* = 0$ and $S^- = 1$, and the worst situation, when $Q^* = 0$ and $Q^- = 1$, can be rewritten as follow:

$$R_k = vS_k + (1 - v)Q_k$$

VIKOR method (5)

This research seeks to combine the influential weights of the DANP with the VIKOR method to determine how to minimise the average gap (or regret) and prioritise improvement in the maximum gap overall and in each dimension based on the INRM by the DEMATEL technique. Thus, this study focuses on how to improve and reduce the performance gaps to achieve the aspiration level based on INRM. Please ensure that the intended meaning has been maintained in this edit.

Fuzzy Integral

Hybrid MADM Model Non-additive/Super-additive Based concept from Kahneman in 1969S [Kahneman, 2002 Novel Prize, from experiment] Kahneman-Tversky (prospect theory) Von Neumann-Morgeustern (Expected utility model Fishburn (bilateral independence) Keeney (Utility independence) Tzeng (New hybrid MCDM field for Tomorrow)

Multiple Attribute Decision Making

Fuzzy Integral (1)

- Multiple attribute decision making (MADM) involves
 - Determining the optimal alternative among multiple, conflicting, and interactive criteria (Chen and Hwang, 1992).
- Many methods, which are based on multiple attribute utility theory (MAUT), have been proposed to deal with the MCDM problems
 - E.g. the weighted sum and the weighted product methods

Fuzzy Integral (2)

- The concept of MAUT
 - To aggregate all criteria to a specific unidimension (called utility function) to evaluate alternatives.
- Therefore, the main issue of MAUT
 To find a rational and suitable aggregation operator (fusion operator) which can represent the preferences of the decision-maker.

Fuzzy Integral (3)

- Although many papers have been proposed to discuss the aggregation operator of MAUT (Fishburn, 1970), the main problem of MAUT
 - The assumption of preferential independence (Hillier, 2001; Grabisch, 1995); but in real world, it is a non-additive/super-additive MAUT problem.

[Kahneman, 2002 Novel Proze, from his experiment, he also found "it is a nonadditive/super-additive MAUT problem" in 1960S] Von Neumann-Morgeustern

Fuzzy Integral (4)

- Preferential independence can be described as the preference outcome of one criterion over another criterion is not influenced by the remaining criteria.
- However, the criteria are usually interactive in the practical MCDM problems.
- In order to overcome this non-additive problem, the Choquet integral was proposed (Choquet, 1953; Sugeno, 1974).

Fuzzy Integral (5)

 The Choquet integral can represent a certain kind of interaction among criteria using the concept of redundancy and support/synergy.

Fuzzy Integral (6)

- In 1974, Sugeno introduced the concept of fuzzy measure and fuzzy integral
 - Generalizing the usual definition of a measure by
 - Replacing the usual additive property with a weaker requirement
 - I.e. the monotonicity property with respect to set inclusion.

Fuzzy Integral (7)

Definition 3.2.1: Let X be a measurable set that is endowed with pro $\aleph \rightarrow [0,1]$ perties of σ -algebra, where \aleph is all subsets of X. A fuzzy measure g defined on the measurable space (X, \aleph) is a set function g:, which satisfies the following properties: (1) $g(\emptyset) = 0, g(X) = 1$; (2) for all $A, B \in \aleph$, if $A \subseteq B$ then $g(A) \leq g(B)$ (monotonicity).

Fuzzy Integral (8)

As in the above definition, (X,\aleph,g) is said to be a fuzzy measure space. Furthermore, as a consequence of the monotonicity condition, we can obtain: $g(A \cup B) \ge \max\{g(A), g(B)\}$, and $g(A \cap B) \le \min\{g(A), g(B)\}$.

In the case where $g(A \cup B) = \max\{g(A), g(B)\}\)$, the set function g is called a possibility measure (Zadeh 1978), and if $g(A \cap B) = \min\{g(A), g(B)\}\)$, g is called a necessity measure.

Fuzzy Integral (9)

Definition 3.2.2: Let $h = \sum_{i=1}^{n} a_i \cdot 1_{A_i}$ be a simple

function, where 1_{A_i} is the characteristic function of the set $A_i \in \mathbb{N}$, $i = 1, \dots, n$; the sets A_i are pairwise disjoint, and $M(A_i)$ is the measure of A_i . Then the Lebesque integral of h is

$$\int h \cdot dM = \sum_{i=1}^{n} M(A_i) \cdot a_i$$

Fuzzy Integral (10)

Definition 3.3.3 Let (X, \aleph, g) be a fuzzy

measure space. The Sugeno integral of a fuzzy measure $g: \Re \to [0,1]$ with respect to a simple function *h* is defined by $\int h(x) \circ g(x) =$

$$\bigvee_{i=1}^{n} (h(x_{(i)}) \wedge g(A_{(i)})) = \max_{i} \min\{a_{i}, g(A_{i})\}, \text{ where }$$

 $h(x_{(i)})$ is a linear combination of a characteristic function 1_{A_i} such that $A_1 \subset A_2 \subset \cdots \subset A_n$, and $A_i = \{x \mid h(x) \ge a_i\}$.

Fuzzy Integral (11)

Definition 3.3.4 Let (X, \aleph, g) be a fuzzy measure space. The Choquet integral of a fuzzy measure $g: \aleph \to [0,1]$ with respect to a simple function h is defined by $\int h(x) \cdot dg \cong$ $\sum_{n} [h(x_i) - h(x_{i-1})] \cdot g(A_i)$, with the same notions as above, and $h(x_{(0)}) = 0$.

Fuzzy Integral (12)

Let g be a fuzzy measure which is defined on a power set P(x) and satisfies the definition 3.3.1 as above. The following characteristic is evidently, $\forall A, B \in P(X), A \cap B = \phi \implies g_{\lambda}(A \cup B) =$

 $g_{\lambda}(A) + g_{\lambda}(B) + \lambda g_{\lambda}(A) g_{\lambda}(B)$, for $-1 \le \lambda \le \infty$.

Fuzzy Integral (13)

Set $X = \{x_1, x_2, \dots, x_n\}$, the density of fuzzy

measure $g_i = g_{\lambda}(\{x_i\})$ can be formulated as

follows:
$$g_{\lambda}(\{x_1, x_2, \dots, x_n\}) = \sum_{i=1}^n g_i + \lambda \sum_{i_1=1}^{n-1} \sum_{i_2=i_1+1}^n g_{i_1} \cdot g_{i_2} +$$

$$\dots + \lambda^{n-1} \cdot g_1 \cdot g_2 \cdots g_n = \frac{1}{\lambda} \left| \prod_{i=1}^n (1 + \lambda \cdot g_i) - 1 \right|, \text{ for }$$

 $-1 \leq \lambda \leq \infty$.

Fuzzy Integral (14)

Let *h* is a measurable set function defined on the fuzzy measurable space (X,\aleph) , suppose that $h(x_1) \ge h(x_2) \ge \cdots \ge h(x_n)$, then the fuzzy integral of fuzzy measure $g(\cdot)$ with respect to $h(\cdot)$ can be defined as follows (Ishii & Sugeno, 1985; see Fig. 1).

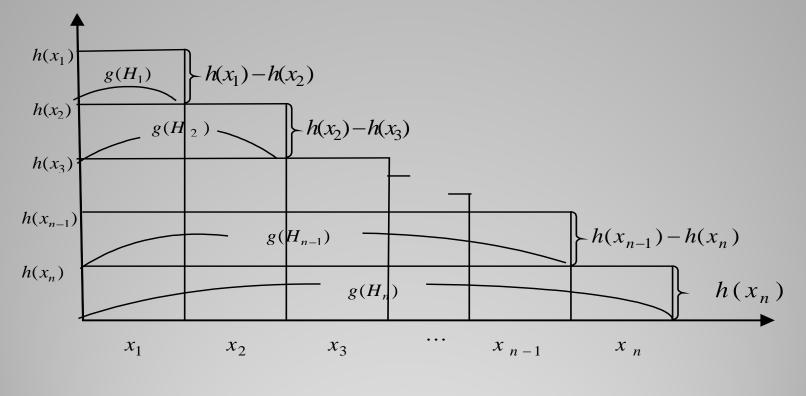


Figure 1 The concept of the Choquet integral

Fuzzy Integral (16)

$$\int h \cdot dg = h(x_n) \cdot g(H_n) + [h(x_{n-1}) - h(x_n)] \cdot g(H_{n-1}) + \dots + [h(x_1) - h(x_2)] \cdot g(H_1) = h(x_n) \cdot [g(H_n) - g(H_{n-1})] + h(x_{n-1}) \cdot [g(H_{n-1}) - g(H_{n-2})] + \dots + h(x_1) \cdot g(H_1), \text{ where } H_1 = \{x_1\}, H_2 = \{x_1, x_2\}, \dots, H_n = \{x_1, x_2, \dots, x_n\} = X \text{ . In addition, if } \lambda = 0$$

and $g_1 = g_2 = \dots = g_n$ then $h(x_1) \ge h(x_2) \ge \dots \ge h(x_n)$ is not necessary.

Fuzzy Measure with Variable Additivity Degree (1)

 A fuzzy measure with variable degree of additivity is proposed to overcome the above mentioned problems

Empirical case

Evaluating mobile learning adoption in higher education based on new hybrid MCDM models

In real case For solving real problems

An empirical case-mobile learning adoption in higher education of Taiwan

• This section presents an empirical case involving Taiwan to emulating mobile learning adoption in higher education based on a new hybrid MCDM model.

Introduction

• This study investigated the mobile learning adoption of evaluation in higher education. Mobile learning is a new form of learning utilizing the unique of mobile devices. However, students' readiness for mobile learning has yet to fully explore in Taiwan.

Introduction

This study contributes in higher education in three ways.

- First, the adoption of mobile learning is explored from a multi-faceted perspective including attitude-related behaviours to mobile learning, perceived behavioural control, and trust-related behaviours. This implies that university practitioners should consider these three factors before employing m-learning.
- Second, the current study shows the relative importance of perceived
 behaviour control (i.e., perceptions of internal and external constraints on
 behaviour) (Taylor and Todd, 1995) in the decision to adopt mobile learning.
- Lastly, the current findings reveal that usefulness and ease of use affect students' attitude for adopting mobile learning. Thus, to facilitate the acceptance of mobile learning, the learning environment should be perceived as useful and easy to use.

Purpose

- The purpose of the present study is to address these issues; we develop a hybrid MCDM model that combines DEMATEL, DANP, and VIKOR.
- The hybrid method overcome the limitations of existing decision models and can be used to help us analyze the criteria that influence mobile learning issue.
- In particular, we use Taiwan's college students as an example to study the interdependence among the factors that influence the user behavior of mobile learning in the higher education as well as evaluate alternative user behavior processes to achieve the aspired levels of performance from mobile learning.

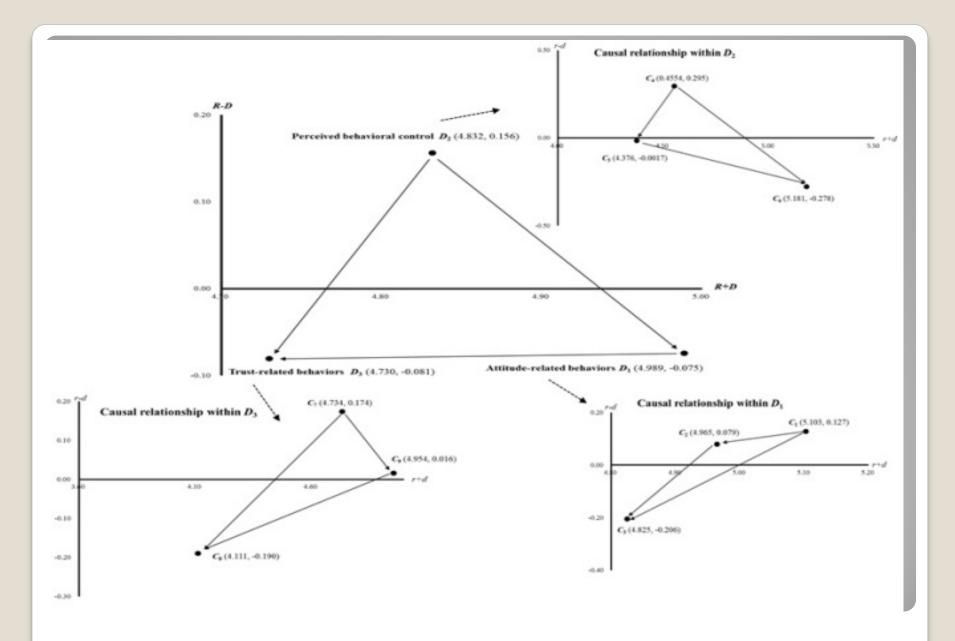
Framework of dimensions and criteria

Dimensions	Criteria		
	Relative advantage C ₁		
Attitude-related behaviours D ₁	Compatibility C ₂		
	Complexity C ₃		
	Self-efficacy C ₄		
Perceived behavioural control D ₂	Resource facilitating conditions C ₅		
	Technology facilitating conditions C ₆		
	Disposition to trust C ₇		
Trust-related behaviours D ₃	Structural assurance C ₈		
	Trust belief C ₉		

Data Collection

- The data was collected from 32 education experts who understand mobile learning trend and usage (in consensus, significant confidence is 96.375%, more than 95%; i.e., gap error =3.265%, smaller less 5%).
- Most of the education experts have teaches more than ten years in higher education.
- Expert perspectives on all criteria within the criteria were collected via personal interviews and a questionnaire.
- Expert elicitation was conducted in Nov., 2012, and it took 60 to70 minutes for each subject to complete a survey.

DEMATEL


• This study obtained the total influential matrix *T* of the dimensions, as shown in Table 1.

D	D ₁	D ₂	D ₃	d _i	s _i	d _{i+} s _i	d _{i-} s _i
D ₁	0.827	0.813	0.817	2.457	2.532	4.989	-0.075
D ₂	0.888	0.784	0.822	2.494	2.338	4.832	0.156
D ₃	0.817	0.741	0.767	2.325	2.406	4.730	-0.081

DEMATEL

• This study obtained the total influential matrix *T* of the criteria, as shown below.

Dimensions/ Criteria	r _i	$d_{_i}$	$r_i + d_i$	$r_i - d_i$	Degree of importanc (Global weights)	e Ranking
Attitude-related behaviors (D_1)					0.348	1
Relative advantage (C_1)	2.522	2.443	4.965	0.079	0.115	5
Compatibility (C_2)	2.615	2.488	5.103	0.127	0.118	3
Complexity (C_3)	2.310	2.515	4.825	-0.206	0.116	4
Perceived behavioral control (D_2)					0.322	3
Self-efficacy (C_4)	2.425	2.129	4.554	0.295	0.097	9
Resource facilitating conditions (C_5)	2.179	2.196	4.376	-0.017	0.100	8
Technology facilitating conditions (C_6)	2.451	2.729	5.181	-0.278	0.125	1
Trust-related behaviors (D_3)					0.331	2
Disposition to trust (C_7)	2.454	2.280	4.734	0.174	0.109	6
Structural assurance (C_8)	1.961	2.150	4.111	-0.190	0.102	7
Trust belief (C_9)	2.485	2.469	4.954	0.016	0.119	2

The gap evaluation of mobile learning by DANP & VIKOR

D/C	Local Weight	Global weight (DANP)	Mobile learning gap (r_{kj})
D_1	0.348		0.197
C_1	0.329	0.115	0.113
C_2	0.339	0.118	0.213
$egin{array}{c} C_2 \ C_3 \end{array}$	0.332	0.116	0.266
D_2	0.322		0.296
C_4	0.300	0.097	0.228
$egin{array}{c} C_4 \ C_5 \ C_6 \end{array}$	0.310	0.100	0.366
C_6	0.389	0.125	0.294
D_3	0.331		0.295
C_7	0.331	0.109	0.266
C_8	0.310	0.102	0.338
C_9	0.359	0.119	0.284
	Tot	al gaps	0.261

Sequence of improvement priority for mobile learning user behaviour

Formula	Sequence of improvement priority
F1:Influential network of dimensions	$(D_2), (D_1), (D_3)$ $(D_1): (C_1), (C_2), (C_3)$ $(D_2): (C_4), (C_5), (C_6)$
F2:Influential network of criteria within individual dimensions	$(D_3), (D_2), (D_1)$
F3:Sequence of dimension to rise to aspired/desired level (by gap value, from high to low)	$(D_1): (C_3), (C_2), (C_1) (D_2): (C_5), (C_6), (C_4) (D_3): (C_7), (C_9), (C_8)$
F1:Influential network of dimensions	$(D_2), (D_1), (D_3)$ (D_1) : $(C_1), (C_2), (C_3)$ (D_2) : $(C_4), (C_5), (C_6)$

Conclusions

- Mobile learning service has an important role in the training of higher education. Its decisions are complicated by the fact that various criteria are uncertainty and may vary across the different product categories and use situations.
- Based on the export and literature review, we developed the three dimensions and 9 criteria that align with the mobile learning service of environment.
- The main reason is among the numerous approaches that are available for conflict management, hybrid MCDM is one of the most prevalent. VIKOR is a method within MCDM; it is based on an aggregating function representing closeness to the ideal (aspiration level), which can be viewed as a derivative of compromise programming for avoiding "choose the best among inferior alternatives (i.e., pick the best apple among a barrel of rotten apples)".

Empirical case

A New Hybrid MADM Model for Problems-Improvement

In real case For solving real problems

An empirical case-TDC of Taiwan

• This section presents an empirical case involving Taiwan to explore strategies for improving tourism destination competiveness (TDC) based on a new hybrid MCDM model.

Background

(why this topic is the most significant issues?)

- Tourism industry should be considered as a key contributor to Taiwan's overall economic growth.
- World Economic Forum (2009) presented the world Travel & Tourism Competitiveness Index, on which Taiwan ranked 9th in the Asia Pacific and 43th in the world.
- However, few studies have focused on exploring strategies for improving TDC in Taiwan.

Research Purposes

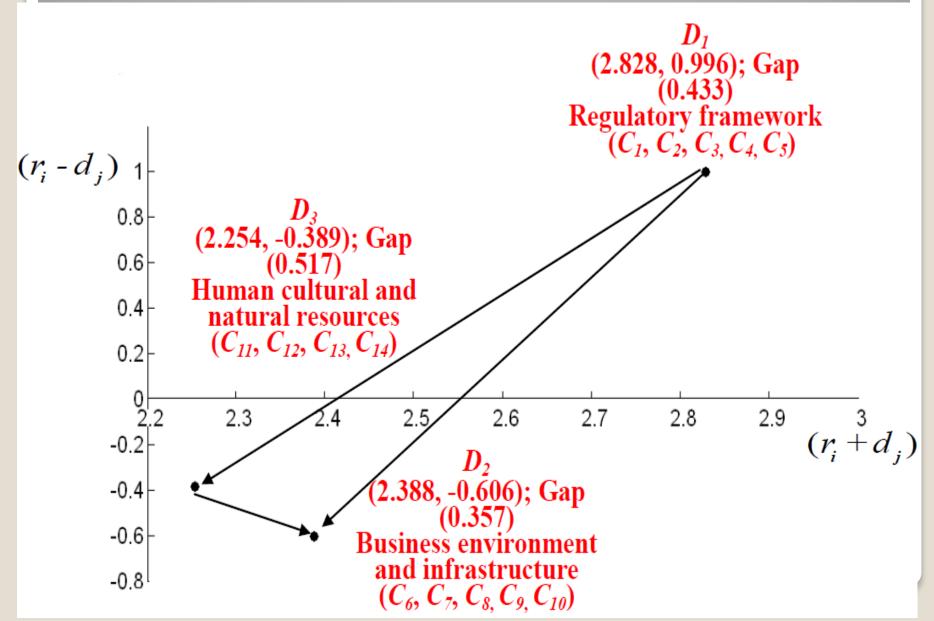
 Exploring strategies for improving tourism destination competitiveness (TDC) in Taiwan based on a new hybrid MCDM model.

Data collection

A list of dimensions/criteria that can enhance TDC was gathered based on a tourism competitiveness report from World Economic Forum in 2009.

- Regulatory framework(D₁)
 - policy rules and regulations(C₁), environmental sustainability(C₂), safety and security(C₃), health and hygiene(C₄), prioritization of Travel & Tourism(C₅)
- Business environment and infrastructure(D₂)
 - air transport infrastructure(C₆), ground transport infrastructure(C₇), tourism infrastructure(C₈), Information and Communication Technology (ICT) infrastructure(C₉), price competitiveness(C₁₀)
- Human, cultural, and natural resources(D₃)
 - human resources(C_{11}), affinity for Travel & Tourism(C_{12}), natural resources(C_{13}), cultural resources(C_{14}).

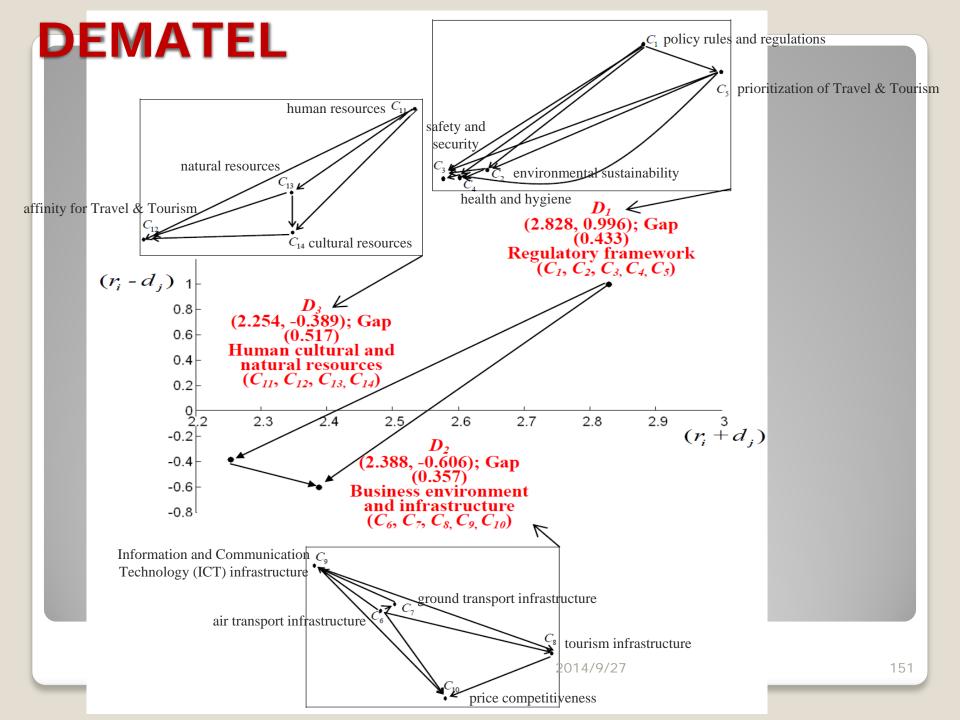
Data collection


- This study used a four-point scale ranging from 0 (no influence) to 4 (very high influence) to identify the criteria and their influence on one another.
 - The experts had backgrounds in travel and tourism fields (national and private universities in Taiwan).
 - Fifteen experts-the consensus rates of the dimensions and criteria were 96.89% and 96.71% (both exceeding 96% in confidence).
- This study gathered secondary data on competitiveness score of dimensions and criteria from the tourism competitiveness report published in 2009.

DEMATEL

• This study obtained the total influential matrix *T* of the dimensions, as shown in Table 1.

Table 1. Total influential matrix of T and the sum of the effects on the dimensions							
Dimensions	D_1	D_2	D ₃	r _i	d _i	$d_i + d_i$	$r_i - d_i$
D_1 Regulatory framework	0.305	0.825	0.782	1.912	0.916	2.828	0.996
D_2 Business environment and infrastructure	0.321	0.237	0.332	0.891	1.497	2.388	-0.606
D_3 Human cultural and natural resources	0.290	0.435	0.208	0.932	1.322	2.254	-0.389


DEMATEL

• This study obtained the total influential matrix *T* of the criteria, as shown in Table 2.

Table 2. The sum of the effects, weights and rankings of each criterion

Criteria	r_i	d_{j}	$r_i + d_j$	$r_i - d_j$	Degree of importance (Global weight)	Ranking
<i>D</i> ₁					0.2866	3
C_1	1.750	0.882	2.633	0.868	0.0544	3
C_2	0.865	0.933	1.798	-0.068	0.0546	2
C_3	0.716	0.846	1.562	-0.131	0.0500	5
C_4	0.764	0.886	1.651	-0.122	0.0537	4
C_5	1.857	1.192	3.048	0.665	0.0739	1
D_2					0.3803	1
C ₆	0.726	0.935	1.661	-0.209	0.0744	3
C_7	0.735	0.936	1.670	-0.201	0.0739	4
C_8	0.754	1.020	1.774	-0.266	0.0809	1
C_9	0.734	0.884	1.618	-0.150	0.0717	5
C ₁₀	0.690	1.014	1.704	-0.325	0.0794	2
D_3					0.3332	2
C ₁₁	1.103	0.778	1.881	0.325	0.0769	4
C ₁₂	0.729	0.930	1.659	-0.202	0.0837	3
C ₁₃	0.884	0.896	1.780	-0.013	0.0841	2
C ₁₄	0.803	0.977	1.781	-0.174	0.0885	1

150

DANP

2.

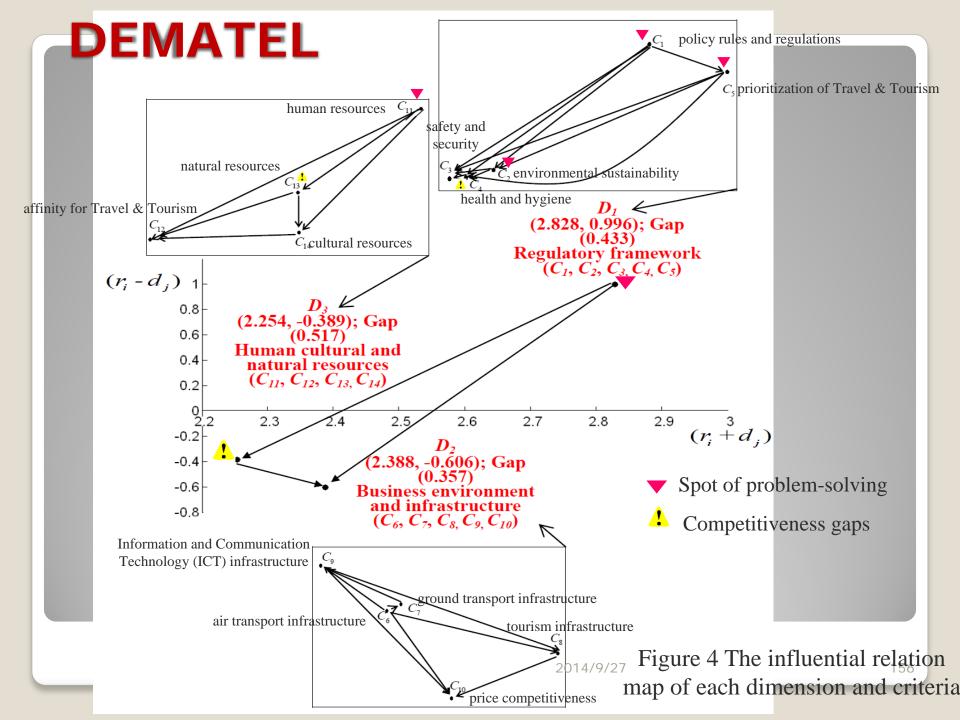
• This study builds the assessment model using DEMATEL, which is combined with the DANP (DEMATEL-based ANP) model to obtain the influential weights of each criterion, as shown in Table

Table 2. The sum of the effects, weights and rankings of each criterion

Criteria	r_i	d_{j}	$r_i + d_j$	$r_i - d_j$	Degree of importance (Global weight)	Ranking
<i>D</i> ₁					0.2866	3
C_1	1.750	0.882	2.633	0.868	0.0544	3
C_2	0.865	0.933	1.798	-0.068	0.0546	2
C_3	0.716	0.846	1.562	-0.131	0.0500	5
C_4	0.764	0.886	1.651	-0.122	0.0537	4
C_5	1.857	1.192	3.048	0.665	0.0739	1
D_2					0.3803	1
C_{6}	0.726	0.935	1.661	-0.209	0.0744	3
<i>C</i> ₇	0.735	0.936	1.670	-0.201	0.0739	4
C ₈	0.754	1.020	1.774	-0.266	0.0809	1
C_9	0.734	0.884	1.618	-0.150	0.0717	5
C ₁₀	0.690	1.014	1.704	-0.325	0.0794	2
D_3					0.3332	2
<i>C</i> ₁₁	1.103	0.778	1.881	0.325	0.0769	4
C ₁₂	0.729	0.930	1.659	-0.202	0.0837	3
C ₁₃	0.884	0.896	1.780	-0.013	0.0841	2
C ₁₄	0.803	0.977	1.781	-0.174	0.0885	1

152

VIKOR


- A real case involving Taiwan is used to assess the total competitiveness using the VIKOR method, as listed in Table 3.
- The scores of each criterion and the total average gap (S_k) of Taiwan are obtained, using the relative influential weights from DANP to multiply the gap (r_{ki})

Dimensions	Local	Global weight	Case study of	Taiwan
/ Criteria	weight	(by DANP)	Score	$\operatorname{Gap}(r_{ki})$
D_1	0.2866(3)		4.40	0.433
<i>C</i> ₁	0.1898	0.0544(3)	4.80	0.367
<i>C</i> ₂	0.1905	0.0546(2)	4.20	0.467
C 3	0.1745	0.0500(5)	5.50	0.250
C_4	0.1874	0.0537(4)	3.30	0.617
<i>C</i> ₅	0.2579	0.0739(1)	4.20	0.467
D_2	0.3803(1)		4.90	0.357
C ₆	0.1956	0.0744(3)	3.80	0.533
<i>C</i> ₇	0.1943	0.0739(4)	5.70	0.217
C 8	0.2127	0.0809(1)	4.40	0.433
C ₉	0.1885	0.0717(5)	5.30	0.283
C ₁₀	0.2088	0.0794(2)	5.10	0.317
<i>D</i> ₃	0.3332(2)		3.90	0.517
C ₁₁	0.2308	0.0769(4)	5.70	0.217
C ₁₂	0.2512	0.0837(3)	4.60	0.400
C ₁₃	0.2524	0.0841(2)	2.40	0.767
C ₁₄	0.2656	0.0885(1)	2.90	0.683
Total performa	ances		4.40	-
Total gap (S_k))		-	0.437

Table 3.	The performance	evaluation of the c	ase study by VIKOR
----------	-----------------	---------------------	--------------------

Discussions and implications

- Figure 4 shows valuable cues for making correct decisions.
- The influential relation map demonstrate that the degrees of influence among dimensions and criteria.
- This study applies the most important and influential criteria as critical criteria(
)to improve the maximal gap (
) of TDC.

An empirical case- Conclusions

- This study can obtain valuable cues for making correct decisions to improve TDC.
- This study uses the DEMATEL to develop causeand-effect influential relationships, calculates the weight using DANP and uses VIKOR method to evaluate competitiveness.
- The decision-maker should improve the cause criteria to successfully improve TDC to achieve the aspiration levels.

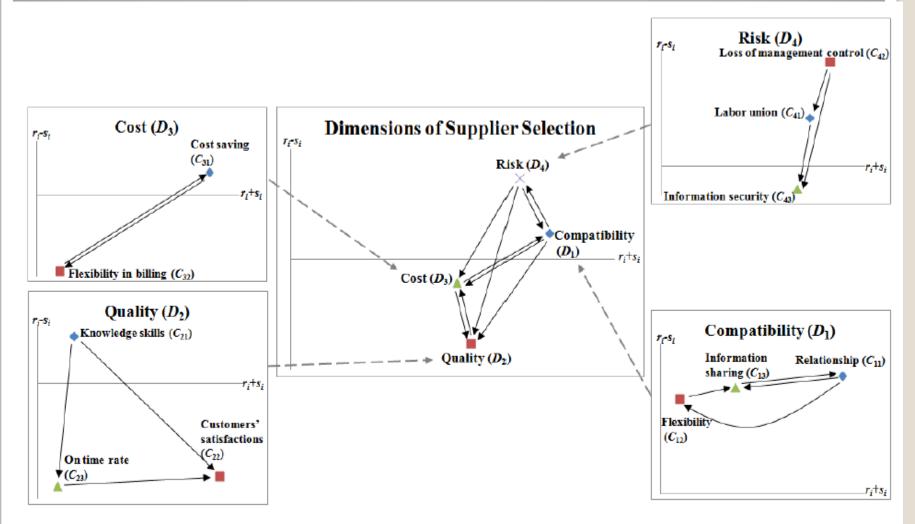
An empirical case-Taiwanese company for supplier evaluation and improvement

• This section presents an empirical case involving Taiwanese company for supplier evaluation and improvement based on a novel fuzzy integral-based hybrid MCDM model that addresses the dependence/relationships among the various criteria and the non-additive gap-weighted analysis.

Data collection

- This discussion with the industry helped us to classify the various decision-making criteria into four dimensions (or called perspectives) and 11 criteria.
 - Compatibility (D₁)
 - Relationship(C_{11}), Flexibility(C_{12}), Information sharing (C_{13})
 - Quality (D_2)
 - Knowledge and skills(C₂₁), Customer satisfaction(C₂₂), Ontime rate(C₂₃)
 - **Cost** (*D*₃)
 - Cost saving(C_{31}), Flexibility in billing(C_{32})
 - **Risk** (*D*₄)
 - Labor union (C_{41}) , Loss of management control (C_{42}) , Information security (C_{43})

DEMATEL


Following the DANP procedures, the managers were asked to determine the influence degrees of the relationships among the criteria.

✤ The sum of the influence given $(r_i - d_j)$ and received $(r_i + d_j)$ for each dimension and criterion (Table 7).

Table 7 Sum of influences given r_i and received d_j on dimensions and criteria

$T^{\mathcal{D}}$	r _i	d_j	$r_i + d_j$	$r_i - d_j$	T ^C	r _i	d_j	$r_i + d_j$	$r_i - d_j$
					C ₁₁	3.73	3.61	7.34	0.12
D_1	1.21	1.18	2.39	0.04	C_{12}	3.12	3.02	6.14	0.09
					C ₁₃	3.33	3.22	6.55	0.11
					C_{21}	2.43	2.11	4.54	0.33
D_2	0.78	0.89	1.67	-0.11	C_{22}	2.23	2.87	5.10	-0.65
					C_{23}	1.88	2.59	4.48	-0.71
D_3	0.76	0.79	1.54	-0.03	C_{31}	2.30	2.21	4.51	0.09
23	0.70	0.75	1.51	0.05	C_{32}	1.89	2.17	4.07	-0.28
					C_{41}	3.09	2.76	5.85	0.34
D_4	1.11	1.00	2.12	0.11	C_{42}	3.68	2.96	6.64	0.72
					C_{43}	2.59	2.74	5.33	-0.16

DEMATEL

Figure 5 Influential network-relationship map within systems

DANP

This study builds the assessment model using DEMATEL, which is combined with the DANP (DEMATEL-based ANP) model to obtain the influential weights of each criterion, as shown in Table 8.

Dimensions	Local Weights	Rankings	Criteria	Local Weights	Rankings	Global Weights
			C ₁₁	0.367	1	0.112
D_1	0.306	1	C_{12}	0.310	3	0.095
			C ₁₃	0.324	2	0.099
			C_{21}	0.281	3	0.065
D_2	0.231	3	C_{22}	0.379	1	0.088
			C ₂₃	0.340	2	0.079
ת	0.204	4	C_{31}	0.506	1	0.103
D_3	0.204	4	C_{32}	0.494	2	0.101
			C_{41}	0.327	2	0.085
D_4	0.259	2	C_{42}	0.351	1	0.091
			C ₄₃	0.322	3	0.083
				2014/9/27		162

Table 8 Influential weights of system factors

Fuzzy integrals

- This study first transform the performance values into the aspiration level gap values.
- Then, through the obtained global weights and gaps for each criterion and dimension, we synthesize the influential weights and gap values.
- In contrast to previous studies that only apply additive models (i.e., simple additive weight, VIKOR, TOPSIS, grey relation), we utilize fuzzy integrals to aggregate the weighted gaps.

Fuzzy integrals

- Through a questionnaire survey conducted by managers of the case company, the fuzzy integral λ values, which range from -1 to positive infinity, that represent the properties of substitutive or multiplicative between criteria are obtained.
- There are substitutive effects among attributes of risk
 and there is a multiplicative effect among compatibility,
 quality, and cost.
- The λ values and the fuzzy measures $g(\cdot)$ are shown in **Table 9**.

Fuzzy Measure $g(\cdot)$ Supplier Selection (evaluating systems) $\lambda = -0.597, q = 1.358$ $g_1(\{D_1\}) = 0.415$ $g_1(\{D_1, D_2\}) = 0.651$ $g_1(\{D_1, D_2, D_3\}) = 0.821$ $g_1(\{D_1, D_2, D_3, D_4\}) = 1$ $g_{2}(\{D_{2}\}) = 0.314$ $g_{2}(\{D_{1}, D_{3}\}) = 0.624$ $g_{2}(\{D_{1}, D_{2}, D_{4}\}) = 0.866$ $g_{\lambda}(\{D_3\}) = 0.277$ $g_{\lambda}(\{D_1, D_4\}) = 0.680$ $g_{\lambda}(\{D_1, D_3, D_4\}) = 0.844$ $g_1(\{D_A\}) = 0.352$ $g_1(\{D_2, D_3\}) = 0.539$ $g_1(\{D_2, D_3, D_4\}) = 0.778$ $g_{\lambda}(\{D_2, D_4\}) = 0.600$ $g_1(\{D_1, D_1\}) = 0.571$ Compatibility (D_1) $\lambda = 0.358$, q = 0.900 $g_{2}(\{C_{11}\}) = 0.330$ $g_{2}(\{C_{11}, C_{12}\}) = 0.642$ $g_{2}(\{C_{11}, C_{12}, C_{13}\}) = 1$ $g_{1}(\{C_{12}\}) = 0.279$ $g_{2}(\{C_{11}, C_{13}\}) = 0.656$ Quality (D_2) $\lambda = 3.902$, q = 0.539 $g_{i}(\{C_{21}\}) = 0.151$ $g_{i}(\{C_{21}, C_{22}\}) = 0.476$ $g_{i}(\{C_{21}, C_{22}, C_{23}\}) = 1$ $g_{\lambda}(\{C_{22}\}) = 0.204$ $g_{\lambda}(\{C_{21}, C_{23}\}) = 0.443$ $g_{\lambda}(\{C_{23}\}) = 0.183$ $g_{\lambda}(\{C_{22}, C_{23}\}) = 0.533$ $Cost(D_3)$ $\lambda = 1.268, q = 0.798$ $g_{\lambda}(\{C_{31}\}) = 0.403 \quad g_{\lambda}(\{C_{31}, C_{32}\}) = 1$ $g_{\lambda}(\{C_{33}\}) = 0.395$ Risk (D_4) $\lambda = -0.073$, q = 1.025 $g_{\lambda}(\{C_{41}\}) = 0.336$ $g_{\lambda}(\{C_{41}, C_{42}\}) = 0.687$ $g_{\lambda}(\{C_{41}, C_{42}, C_{43}\}) = 1$ $g_{\lambda}(\{C_{42}\}) = 0.360$ $g_{\lambda}(\{C_{41}, C_{43}\}) = 0.657$

 $g_1(\{C_{43}\}) = 0.330$ $g_1(\{C_{42}, C_{43}\}) = 0.681$

165

Table 9 Fuzzy measure $g(\lambda)$ of each parameter and parameter combination

Fuzzy integrals

Using the obtained $g(\cdot)$ and the original data (**Appendix**, **Table A**), we can obtain the gap-ratios $r_{kj} = (|f_j^* - f_{kj}|)/(|f_j^* - f_j^-|)$ for alternatives k = 1, 2, ..., m, respective to each criterion (**Table 10**).

Critaria	Weights	Weights	Alternative				
Criteria	(Global)	(Local)	A_1	A_2	A_3		A_5
Compatibility (D ₁)		0.306	0.241	0.198	0.197	0.183	0.264
Relationship (C_{11})	0.112	0.367	0.264	0.208	0.199	0.198	0.268
Flexibility (C_{12})	0.095	0.310	0.214	0.211	0.198	0.176	0.264
Information sharing (C_{13})	0.099	0.324	0.242	0.175	0.194	0.173	0.258
Quality (D_2)		0.231	0.290	0.231	0.236	0.236	0.221
Knowledge skills (C_{21})	0.065	0.281	0.280	0.221	0.275	0.224	0.214
Customer satisfaction (C_{22})	0.088	0.379	0.286	0.255	0.227	0.265	0.203
On time rate (C_{23})	0.079	0.340	0.302	0.213	0.213	0.214	0.246
$Cost(D_3)$		0.204	0.243	0.306	0.330	0.343	0.268
Cost saving (C_{31})	0.103	0.506	0.246	0.333	0.313	0.324	0.267
Flexibility in billing (C_{32})	0.101	0.494	0.239	0.278	0.348	0.362	0.269
Risk (D_4)		0.259	0.251	0.244	0.227	0.248	0.277
Labor unions (C_{41})	0.085	0.327	0.257	0.292	0.214	0.219	0.275
Loss of management control (C_{42})	0.091	0.351	0.255	0.208	0.218	0.248	0.288
Information security (C_{43})	0.083	0.322	0.242	0.235	0.249	0.278	0.268
Total Gap (rank)			0.255 (4)	0.240 (1)	0.241 (2)	0.245 (3)	0.258 (5)

Table 10 Gap ratio values of potential suppliers by SAW

Note: For example alternative A_1 , D_1 : $(0.264 \times 0.367) + (0.214 \times 0.310) + (0.242 \times 0.324) = 0.241$, and total gap ratio = $0.241 \times 0.304 + 0.290 \times 0.231 + 0.243 \times 0.204 + 0.251 \times 0.259 = 0.225$ (additive); the original data are shown in the **Appendix**, Table A. The gap ratio is $r_{kj} = (|f_j^* - f_{kj}|) / (|f_j^* - f_j^-|)$ for alternatives k = 1, 2, ..., m and criteria j=1, 2, ..., n.

Fuzzy integrals

The integrated weighted gaps of each potential supplier are then calculated as shown in **Table 11**.

Table 11 Gap ratio values of potential suppliers by Fuzzy Integral

Criteria	Weights	Alternative					
Cinteria	Local	A_1	A_2	A_3	A_4	A_5	
Compatibility (D_1)	0.306	0.240	0.179	0.197	0.182	0.263	
Relationship (C_{11})	0.367	0.264	0.208	0.199	0.198	0.268	
Flexibility (C_{12})	0.310	0.214	0.211	0.198	0.176	0.264	
Information sharing (C_{13})	0.324	0.242	0.175	0.194	0.173	0.258	
Quality (D_2)	0.231	0.286	0.224	0.227	0.227	0.214	
Knowledge skills (C_{21})	0.281	0.280	0.221	0.275	0.224	0.214	
Customer satisfaction (C_{22})	0.379	0.286	0.255	0.227	0.265	0.203	
On time rate (C_{23})	0.340	0.302	0.213	0.213	0.214	0.246	
$Cost(D_3)$	0.204	0.242	0.300	0.327	0.339	0.268	
Cost saving (C_{31})	0.506	0.246	0.333	0.313	0.324	0.267	
Flexibility in billing (C_{32})	0.494	0.239	0.278	0.348	0.362	0.269	
Risk (D_4)	0.259	0.252	0.245	0.227	0.249	0.277	
Labor unions (C_{41})	0.327	0.257	0.292	0.214	0.219	0.275	
Loss of management control (C_{42})	0.351	0.255	0.208	0.218	0.248	0.288	
Information security (C_{43})	0.322	0.242	0.235	0.249	0.278	0.268	
Total gap		0.359	0.350	0.345	0.361	0.376	
(rank) Note: For example Alternative A1, D1: (0.264-0		(3)	(2)	(1)	(4)	(5)	

Note: For example Alternative A_1 , D_1 : $(0.264-0.242) \times 0.330$ + $(0.242-0.214) \times 0.656$ + $(0.214 \times 1)=0.240$, total ratio gap: $(0.286-0.252) \times 0.314$ + $(0.252-0.242) \times 0.600$ + $(0.242-0.240) \times 0.778$ + $(0.240 \times 1) = 0.359$ (non-additi

total ratio gap: $(0.286-0.252) \times 0.314$ + $(0.252-0.242) \times 0.600$ + $(0.242-0.240) \times 0.778$ + $(0.240 \times 1) = 0.359$ (non-additive)

Fuzzy integrals

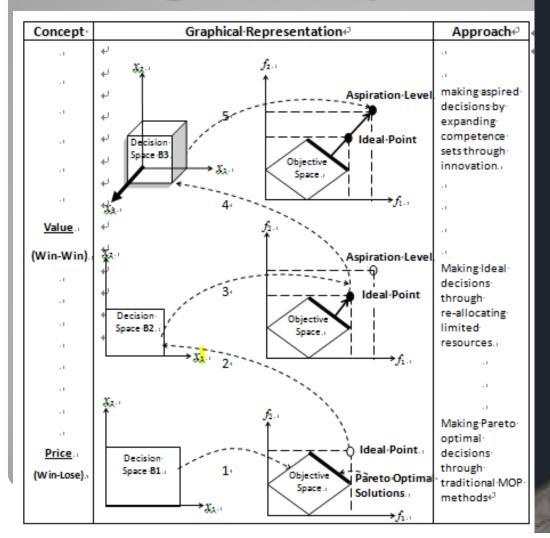

• The results of comparison between non-additive and additive methods are illustrated in Table 12.

 Table 12 Results comparison between non-additive and additive methods

		Dimensio	on (Additive / Non-	Additive)	
	A_1	A_2	A_3	A_4	A_5
D_1 Compatibility $\lambda = 0.358$	0.241 / 0.240 (-1%)	0.198 / 0.179 (-10%)	0.197 / 0.197 (0%)	0.183 / 0.182 (0%)	0.264 / 0.263 (0%)
D_2 Quality	0.290 / 0.286	0.237 / 0.231	0.236 / 0.227	0.236 / 0.227	0.221 / 0.214
$\lambda = 3.902$	(-1%)	(-3%)	(-4%)	(-4%)	(-3%)
D_3 Cost	0.243 / 0.242	0.306 / 0.300	0.330/0.327	0.343 / 0.339	0.268 / 0.268
$\lambda = 1.268$	(0%)	(-2%)	(-1%)	(-1%)	(0%)
D_4 Risk	0.251 / 0.252	0.244 / 0.245	0.227 / 0.227	0.248 / 0.249	0.277 / 0.277
$\lambda = -0.073$	(1%)	(1%)	(0%)	(1%)	(0%)
Total gaps	0.255 / 0.359	0.243 / 0.350	0.241 / 0.345	0.245 / 0.361	0.258/ 0.376
$\lambda = -0.597$	(40%)	(44%)	(42%)	(48%)	(46%)

Note. Parenthesis represents the increased gap ratio %

Changeable Spaces Programming

Fuzzy Multiple Objective Decision Making

Gwo-Hshiung Tzeng Jih-Jeng Huang

 $\overline{170}$

C BC Pres

Continuity in comparis

Jih-Jeng Huang, Gwo-Hshiung Tzeng (Corresponding author) (2013), New thinking of multi-objective programming with changeable space - In search of excellence, *Technological and Economic Development of Economy*, Accepted (forcoming, SSCI, IF: 5.605, 2011; IF: 3.235, 2012).

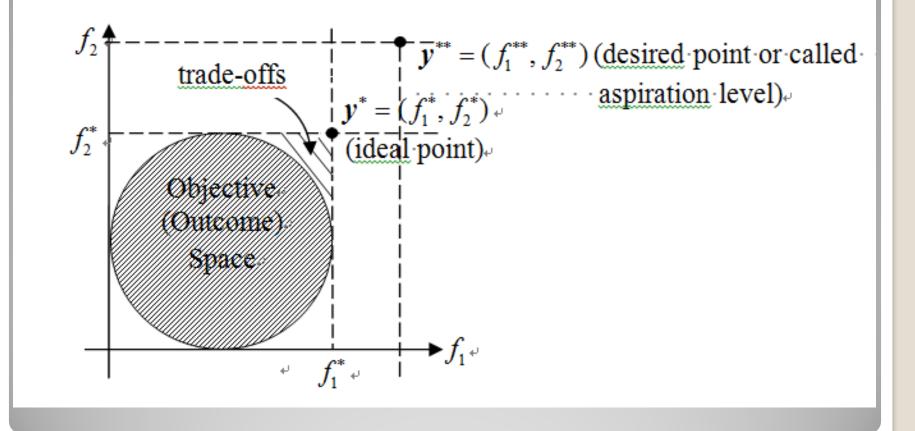
Resource Allocation of Zeleny's Example

	Table 1 Resource allocation of Zeleny's example.						
Unitorica	Decourse	Technologica	No. of units.				
Unit price.	Resource	$x_1 = 1 e$	$x_2 = 1 + 1$	INO. OF units?			
30.0	Nylon.	· 4.	0₄⊃	20.0			
40.0	Velvet.	· 2*	6⊷	24.0			
· · 9.5e	Silver thread.	12*	4₽	60 +2			
20.0	Silk	· 0.	3₽	· 10.5+			
10.0	Golden thread.	· 4.	4.0	26.			

Decision Space and Objective Space

max $f_1 = 400x_1 + 300x_2$ max $f_2 = 6x_1 + 8x_2$ $s.t. \cdots 4x_1 \cdots \leq 20.4$ $2x_1 + 6x_2 \le 24, \forall$ $12x_1 + 4x_2 \le 60, \forall$ $\cdots 3x_{2} \leq 10.5, \forall$ $4x_1 + 4x_2 \dots \leq 26$, $x_1, x_2 \ge 0$

Objective Space Decision Space


Modified Example to Demonstrate Yu's Model

Tab	Table 2 · Modified · example · to · demonstrate · Yu's · model. ·								
Resource.»	Unit Purchase Benefit								
Nylon	· 4.	0.0	20.0	0.3*					
Velvet	· 2.	6⊷	24.0	0.3					
Silver thread.	12.0	4₽	60+	0.3					
Silk	· 0.	3₽	· 10.5+	0.3*					
Golden thread.	· 4.	4₽	26.	0.3~					

New Decision Space and Objective Space

$\max f_1 = 400x_1 + 300x_2 + y(3x_1 + 4x_2)$	Objective Space
$\max f_2 = 6x_1 + 8x_2 + y(0.3x_1 + 0.2x_2) +$	
$\underline{s.t.} \cdot 4x_1 \cdot \cdot \cdot \leq 20 + 0.3z, \mathbf{a}$	Decision Space
$2x_1 + 6x_2 \le 24 + 0.3z$,	
$12x_1 + 4x_2 \le 60 + 0.3z$,	
$\cdots 3x_{2} \le 10.5 + 0.3z$	
$4x_1 + 4x_2 \le 26 + 0.3z$,	
$0 \le y, z \le 7, \cdot$	
$y+z\leq 10, \cdot v$	
$\underbrace{x_1}, x_2, y, z \ge 0.4$	

Basic concept of the desired point or called aspiration level

MOP with changeable parameters

<Model 1: MOP with changeable budgets>...

 $\min \quad \widehat{B} \quad \dots \quad (10)_{*}$ $s.t. \quad \sum_{j=1}^{m} c_{ij} x_{ij} = f_{i}^{**}(\mathbf{x}), \quad i = 1, \dots, n, *$ $\rightarrow \dots \quad p' A \mathbf{x} \le B + \widehat{B}, *$

 $\rightarrow \quad \stackrel{\scriptstyle \rightarrow}{\rightarrow} \quad \stackrel{\scriptstyle <}{\overset{\scriptstyle extra}{\leftarrow}} \text{ conditions } \cdot \text{ for } \cdot \quad \widehat{B} >_{\downarrow}$

Information Table for Example 1

Table 3 Information Table for Example 1.					
Unit price.	Resource .	Technological coefficients.		No. of units.	
	Resource	$x_1 = 1 + 1$	$x_2 = 1 + 1$	No. or units	
30.0	Nylon₊	4⊷	0,43	b_{1}	
40⊷	Velvet.	2.	6.	$b_{2^{*^2}}$	
9.5₽	Silver thread.	12*	4₽	<i>b</i> ₃ +	
20.0	Silk	0,⊷	3₽	b_{4} \sim	
10,	Golden thread.	4₽	4₄	b _{5 *}	

Solving the problem of Example 1

 $\begin{array}{ll} \min \ \widehat{B} \\ s.t. & 400x_1 + 300x_2 = 2600, \ e^{t} \\ \Rightarrow & \Rightarrow & 6x_1 + 8x_2 = 60, \ e^{t} \\ \Rightarrow & \Rightarrow & 30 \times 4x_1 + 40 \times (2x_1 + 6x_2) + 9.5 \times (12x_1 + 4x_2) + 20 \times 3x_2 \ e^{t} \\ \Rightarrow & \Rightarrow & +10 \times (4x_1 + 4x_2) \le 2600 + \widehat{B}, \ e^{t} \\ \Rightarrow & \Rightarrow & x_1, x_2 \ge 0. \ e^{t} \end{array}$

MOP with changeable objective coefficient

<Model 2: MOP with changeable objective coefficients>.

 $\min \ \widehat{B} \cdots \cdots \cdots (11),$ $s.t. \qquad \sum_{j=1}^{m} (c_{ij} + \widehat{c}_{ij}) x_{ij} = f_i^{**}(\mathbf{x}), \quad i = 1, ..., n, \quad \rightarrow \quad \cdots \quad \leftrightarrow$ $\cdots \qquad p' A \mathbf{x} + \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij}^c \widehat{c}_{ij} \le B + \widehat{B}, \quad \leftrightarrow$ $\cdots \qquad < \text{extra} \cdot \text{conditions} \cdot \text{for} \quad p_{ij}^c \cdot \text{and} \cdot \widehat{c}_{ij} > \phi$ $\mathbf{x} \ge \mathbf{0}, \quad \phi$

Information Table for Example

Table 4. Information Table for Example 2.									
Objective c $x = 1 e^{x}$	oefficients: y = 1	Unit price₀	Resource	Technological $x_1 = 1$	coefficients: $x_2 = 1$	No. of units			
400· (\$0.200)~	300· (\$0.289)。	30⊷	Nylon₽	· 4.	0,~	b ₁ *'			
6 (\$2.225)₀	8· · (\$2.487)⊮	40.0	Velvet₀	· 2.	6.0	$b_{2^{*^2}}$			
Ģ	сь С	· · 9.5+	Silver thread₽	12.	4.0	b3 *			
ą	¢.	20.0	Silke	· 0.	3₽	b_{4}			
с,	r,	10	Golden thread₀	· 4.	4.	<i>b</i> 5 ⁴			

Mathematical programming to consider achieving the desired points via improving the objective coefficients

min \hat{B}

s.t.
$$(400 + \hat{c}_{11})x_1 + (300 + \hat{c}_{12})x_2 = 2600, \forall$$

$$\rightarrow (6 + \hat{c}_{21})x_1 + (8 + \hat{c}_{22})x_2 = 60, 4$$

$$\rightarrow 30 \times 4x_1 + 40 \times (2x_1 + 6x_2) + 9.5 \times (12x_1 + 4x_2) + 20 \times 3x_2 + 3x_2 +$$

 $\rightarrow +10 \times (4x_1 + 4x_2) + (0.200\hat{c}_{11} + 0.289\hat{c}_{12} + 2.225\hat{c}_{21} + 2.487\hat{c}_{22}) \le 2600 + \hat{B},$ $\rightarrow x_1, x_2 \ge 0.4$

MOP with Changeable Technological Coefficients

<Model-3: MOP with Changeable technological coefficients >...

$$\min \ \widehat{B} \cdots \cdots (12)$$

$$s.t. \qquad \sum_{j=1}^{m} c_{ij} x_{ij} = f_i^{**}(\mathbf{x}), \quad i = 1, \dots, n, *$$

$$\rightarrow \cdots \quad p'(\mathbf{A} \cdot \widehat{A}) \mathbf{x} + \sum_{k=1}^{r} \sum_{j=1}^{m} p_{kj}^a \widehat{a}_{kj} \le B + \widehat{B}, *$$

 $\cdots \cdots < \text{extra} \cdot \text{conditions} \cdot \text{for} \quad p_{ij}^a \cdot \text{and} \quad \widehat{a}_{ij} > 0$

 $x \ge 0, \Rightarrow \psi$

Information Table for Example

Table 5. Information Table for Example 3.									
Objective coefficient.		Unit price.	Resource	Technological coefficients.		No. of units			
x = 1 e	$y = 1_{\varphi}$	Outplice	Resource	$x_1 = 1 e^{-x_1}$	$x_2 = 1 e^{-1}$	NO. OI ullus			
400 ⊷	300⊷	30.0	Nylon.	4 • (\$0.5).	0,	b_{1}			
6⊷	8.0	40 ⊷	Velvet _€	2·(\$0.5)~	6 · (\$0.27).	$b_{2^{e^{\circ}}}$			
Ģ	ت	· · 9.5+	Silver thread.	12 (\$0.27)	4 · (\$0.26).	<i>b</i> ₃ ~			
ę	⊊ ₉	20+	Silk	0*2	3 · (\$0.25),	$b_{4^{e^{o}}}$			
¢.	ت	10,0	Golden thread.	· 4·(\$0.25),	4 · (\$0.25).	<i>b</i> 5 *			

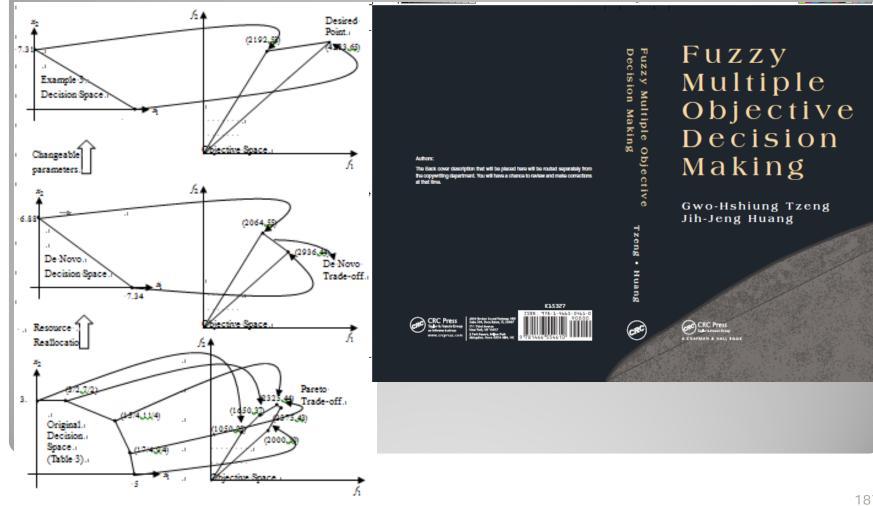
Incorporating the information of the unit updating cost of the technological coefficients

min \widehat{B}

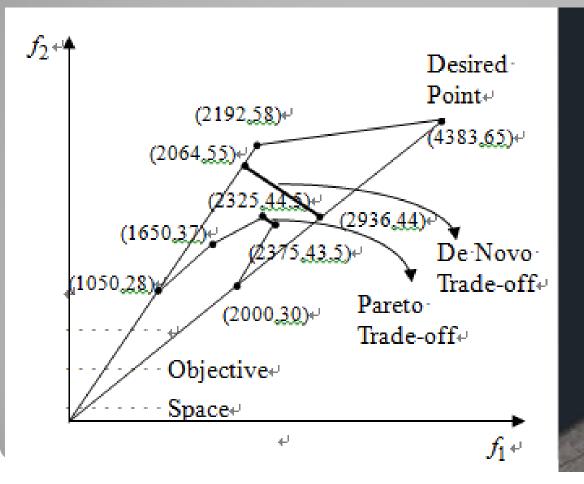
s.t.
$$400x_1 + 300x_2 = 2600, *$$

$$\rightarrow \quad 6x_1 + 8x_2 = 60, 4$$

- $\Rightarrow \quad 30 \times (4 \hat{a}_{11}) x_1 + 40 \times ((2 \hat{a}_{21}) x_1 + (6 \hat{a}_{22}) x_2) + 9.5 \times ((12 \hat{a}_{31}) x_1 + (6 \hat{a}_{31}) x_$
- $\rightarrow +(4-\hat{a}_{32})x_2)+20\times(3-\hat{a}_{42})x_2+10\times((4-\hat{a}_{51})x_1+(4-\hat{a}_{52})x_2)$
- $\begin{array}{rcl} & \rightarrow & +0.5 \, \widehat{a}_{11} + 0.5 \, \widehat{a}_{21} + 0.27 \, \widehat{a}_{22} + 12 \, \widehat{a}_{31} + 4 \, \widehat{a}_{32} + 3 \, \widehat{a}_{42} + 4 \, \widehat{a}_{51} + 4 \, \widehat{a}_{52} \leq 2600 + \widehat{B} \ ,$ $\begin{array}{rcl} \rightarrow & \rightarrow & x_1, x_2 \geq 0.4 \end{array}$


A more general model of changeable parameters

$$\min \widehat{B} \cdots \cdots (13)$$


$$st. \sum_{j=1}^{m} (c_{ij} + \widehat{c}_{ij}) x_j \ge f_i^{**}(x), \quad i = 1, \dots, n, \quad \Rightarrow \quad \cdots \quad \cdots \quad \cdots \quad \Rightarrow \quad \Rightarrow \quad p'(A - \widehat{A}) x + \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij}^c \widehat{c}_{ij} + \sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij}^a \widehat{a}_{ij} \le B + \widehat{B}, \cdots \quad \cdots \quad \Rightarrow \quad \Rightarrow \quad < \text{extra} \cdot \text{conditions} \cdot \underbrace{\text{for}}_{ij} \widehat{B}, \quad p_{ij}^c, \quad \widehat{c}_{ij}, \quad p_{ij}^a \cdot \text{and} \cdot \widehat{a}_{ij} > \varphi$$

$$x \ge \mathbf{0} \cdot \varphi$$

Changeable spaces for achieving the desired point

A comparison of objective space

Fuzzy Multiple Objective Decision Making

Gwo-Hshiung Tzeng Jih-Jeng Huang

CHE Press

Tutorial

- New concepts and trends of MCDM for Tomorrow
- How consider for solving the real world
- Basic concepts of ideas and thinking in trends
- Some examples for the real cases: New hybrid MCDM model
 - MADM DEMATEL, DANP (DEMATEL-based ANP), Integration (Additive: SAW, VIKOR, Grey Relation Analysis, PROMETHEE, ELECTRE; Non-additive: Fuzzy Integral)
 - MODM Changeable Spaces Programming

- This study proposed a series of new Hybrid Dynamic Multiple Criteria Decision Making (HDMCDM) method in order to overcome the defects of conventional MCDM method.
- First, applies the characteristics of influential weights ANP and combines them with DEMATEL (call DANP, DEMATEL-based ANP) to solve interdependence and feedback problems of criteria.
- Second, this study set the best f_j^* values to be the aspiration level and the worst f_j^- values as the tolerable level for all criterion functions, j = 1, 2, ..., n. to avoid "Choose the best among inferior choices/options/ alternatives.

- Third, this study shifted the concept from the "ranking" or "selection" of the most preferable alternatives to the "improvement" of their performances to achieve the aspiration level for each dimension and criterion.
- Fourth, information fusion/aggregation such as fuzzy integrals, basically, a non-additive/super-additive model, has been developed to aggregate the performances.
- Finally, we should change basic concepts and thinking from traditional mathematic programming (Goal Programming, Multiple Objective Programming, etc.) into Changeable Spaces Programming in future trends

Multiple Attribute Decision Making

The End

Thank you attention

Email: <u>ghtzeng@mail.ntpu.edu.tw</u> <u>ghtzeng@cc.nctu.edu.tw</u>

Gwo-Hshiung Tzeng (Website)

<u>http://www.knu.edu.tw/Distinguished</u> <u>http://mcdm.ntcu.edu.tw/tzeng</u> <u>http://sciencewatch.com/dr/erf/2009/09aprerf/09aprerfOpriET</u> <u>http://www.knu.edu.tw/Distinguished/files/Published_in_Elsevier.m</u> <u>ht</u> http://scholar.google.com/citations?user=ZRXOrvQAAAAJ&hl=en