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Abstract1 

Fuzzy measure and Choquet integral are effective 
tools for handling complex multiple criteria decision 
making (MCDM) problems in which criteria are in-
ter-dependent. The identification of a fuzzy measure 
requires the determination of 2 2n −  values when 
the number of criteria is n. The complexity of this 
problem increases exponentially, which makes it 
practically very difficult to solve. Many methods have 
been proposed to reduce the number of values to be 
determined including the introduction of new special 
fuzzy measures like the λ -fuzzy measures. However, 
manipulations of the proposed methods are difficult 
from the aspects of high data complexity as well as 
low computation efficiency. Thus, this paper pro-
posed a novel fuzzy measure identification method by 
reducing the data complexity to ( 1) / 2n n −  and en-
hancing the computation efficiency by leveraging a 
relatively small number of variables and constraints 
for linear programming. The proposed method was 
developed based on the evaluation of pair-wise addi-
tivity degrees or interdependence coefficients be-
tween the criteria. Depending on the information be-
ing provided by decision-makers on the individual 
density of each criterion, the fuzzy measure can be 
constructed by solving a simple system of linear ine-
qualities or a linear programming problem. This 
novel method is validated through a supplier selec-
tion problem which occurs frequently in real-world 
decision-making problems. Validation results dem-
onstrate that the newly-proposed method can model 
real-world MCDM problems successfully.  

Keywords: Choquet integral, Fuzzy integral, fuzzy 
measure, identification, linear programming, multiple 
criteria decision-making (MCDM). 
 

1. Introduction 
 

Fuzzy measures and Choquet integral are effective 
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tools for handling the interactions and complexities of 
decision problems [1-8]. In multiple criteria decision 
making (MCDM) problems, fuzzy measures are used to 
represent the interactions between criteria, namely, the 
aspects of independences, complementarities and redun-
dancies between criteria. Once a fuzzy measure is identi-
fied, a fuzzy integral can be used as an aggregation tool 
for evaluating and ranking alternatives [2, 4]. The Cho-
quet Integral is one of the most used fuzzy integrals. 

However, the identification of a fuzzy measure is one 
of the most difficult steps in applying fuzzy integrals to 
solve MCDM problems since 2 2n −  values of the 
fuzzy measure should be provided by the deci-
sion-maker(s) for an MCDM problem with n  criteria. 
For example, if the number of criteria ( n ) is 7 (i.e., 

7n = ), the number of values of the fuzzy measure to be 
provided is 126. Therefore, for a large number of criteria, 
it becomes practically impossible for a decision-maker to 
provide the necessary data for fuzzy measure identifica-
tion. Consequently, various fuzzy measure identification 
methods have been proposed. Typical examples can be 
found in the literature [1, 5-7, 9-16]. In [1, 4], the fuzzy 
measure identification methods are classified into three 
groups. The first group of methods is based on semantic 
considerations for guessing the fuzzy measure. The sec-
ond group, called learning methods, is based on identifi-
cation of the fuzzy measure by optimization methods. 
The third group of methods combines semantic and 
learning methods [17]. With the third group of methods, 
semantic considerations can be used to help reduce the 
large number ( 2 2n − ) of constraints in the quadratic 
optimization problems to be involved in the learning 
methods. Furthermore, it is worth noting that for some 
extremely complex decision problems, the required 
knowledge for fuzzy measure identifications may not be 
easily given by a decision-maker or he/she may not be 
knowledgeable enough about the decision problem. To 
resolve this kind of problems, Kojadinovic [18] pro-
posed an unsupervised identification method based on 
the estimation of the fuzzy measure coefficients by 
means of information-theoretic functions. The approach 
mainly consists in replacing the rather subjective notion 
of importance of a subset of criteria by that, probabilistic, 
of information content of a subset of criteria, which can 
be estimated from the set of profiles. However, from a 
practical perspective, a sufficiently large number of pro-
files is obviously necessary (the number has to grow al-
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most exponentially with the number of criteria) to obtain 
accurate estimates of the fuzzy measure coefficients and 
therefore of the Choquet integral. 

With the aim of reducing the complexity of initial data 
requirements for fuzzy measure identification, several 
subfamilies of fuzzy measures have been defined. In 
these families, some extra restrictions are added in order 
to decrease the number of coefficients while, keeping the 
modeling capabilities of the measures at the same time. 
Sugueno’s [5] λ -fuzzy measure is such a specific fuzzy 
measure. Several methods [19-21] have been proposed 
for λ -fuzzy measure identifications. Since the proposed 
method in this paper is basically an optimization method, 
existing methods for fuzzy measure identification based 
on optimization approaches are reviewed further in de-
tails. In a recent review by Grabisch et al. [22], the main 
approaches, namely, least square, minimum split and 
minimum variance approaches, to fuzzy measure identi-
fication based on the Möbius transform of a capacity and 
k -additivity are reviewed and their advantages and in-
conveniences are discussed. The least square based ap-
proach is historically the first approach that has been 
proposed, it can be regarded as a generalization of clas-
sical multiple linear regression. The aim is to minimize 
the average quadratic distance between the overall utili-
ties computed by means of the Choquet integral and the 
desired overall scores provided by the decision-maker. 
The weakness of this type of methods is that the ob-
tained solution may not be unique because the objective 
function of the solved quadratic optimization problem 
may not be strictly convex. The maximum split approach 
is based on linear programming. Roughly speaking, the 
idea of the proposed approach is to maximize the mini-
mal difference between the overall utilities of objects 
that have been ranked by the decision-maker(s) through 
the partial weak order. The advantage of this approach is 
its simplicity. However, it does not necessarily lead to a 
unique solution. The idea of the minimum variance 
method is to favor the “least specific” capacity, if any, 
compatible with the initial preferences of the deci-
sion-maker. One of the advantages of this approach is 
that it leads to a unique solution. Also, in the case of 
“poor” initial preferences involving a small number of 
constraints, this unique solution will not exhibit too spe-
cific behaviors characterized, for instance, by very high 
positive or negative interaction indices or a very uneven 
Shapley value.  

Another optimization approach based on genetic algo-
rithms has been proposed to reduce the complexity of 
fuzzy measure identification. For the purpose of ease of 
use, Lee and Leekwang [23] developed an identification 
method of λ -fuzzy measures based on genetic algo-
rithms. From their results, even if there was no complete 
information for a fuzzy measure value of an element 

from the data set, their proposed method could still be 
applied for identification. It performed better than those 
presented in the works by Sekita [20], Tahani and Keller 
[19] as well as Wierzchon [21]. However, according to 
their identification procedure, most of the hu-
man-provided measure values are required for better so-
lution quality. Namely, their method does not have a 
scheme to control the amount of lost information on the 
premise of producing a satisfactory solution. To over-
come the difficulty of data collection for subjective im-
portance identification, Sekita and Tabata [24] dropped 
the subsets whose grades of importance are near zero. 
This means reducing the cardinality of a set from n  to 

1n − . Nevertheless, the complexity of data collection is 
O(2 )n  and this improvement is slightly effective. Wang 
and Chen [14, 25] used a sampling process of subsets of 
a finite set and a procedure of data collection through 
experimental design methods. Based on this sampling 
procedure, they use genetic algorithms for effectively 
identifying λ -fuzzy measures. They reduced the com-
plexity of data collection to O(2n/n). 

In order to reduce the complexity of initial data being 
required for fuzzy measure identification, Takahagi [12] 
proposed an approach based on two types of pair-wise 
comparison. The first one is based on the pair-wise 
comparison values of interaction degrees between crite-
ria. The second one is based on the pair wise comparison 
values of weights of criteria. Then the fuzzy measure can 
be identified by the diamond pair-wise comparison and 
the sϕ  transformation. Thus, the complexity of data 
collection can be reduced to ( 1)n n − .  

To further reduce the initial data collection complexity 
and simplify the process of computation in fuzzy meas-
ure identification, this paper intends to propose a novel 
fuzzy measure identification method. The major contri-
butions of this proposed novel method are: the reduction 
of initial data requirements and the simplification of 
computations. 1) The initial data being required will be 
reduced to ( 1) / 2n n −  ( n  stands for the number of cri-
teria), the number of pair-wise assessments of interde-
pendence or interaction between criteria to be provided 
by the decision-makers. Then, a fuzzy measure can be 
identified via the resolution of a system of linear ine-
qualities.  In case decision-makers provide fuzzy as-
sessments of the individual density of each criterion for a 
MCDM problem, the number of data being required will 
be ( 1) / 2n n n− + . In this case, the Zimmermann’s 
method for solving fuzzy linear multi-objective prob-
lems [17] can be used to identify the fuzzy measure. 
Thus, from the aspect of initial data being required, the 
proposed method is better than the Takahagi’s method 
which requires ( 1)n n −  data. 2) From the viewpoint of 
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computation simplification, in comparison with the 
commonly used quadratic optimization problems in ex-
isting fuzzy measure identification methods (e.g. [21]), 
which generally involve a large number, ( 2 2n − ), of 
constraints, the newly proposed method is simpler. In-
deed, it reduces to the resolution of a system of linear 
inequalities or linear programming problem based upon 
a considerably smaller number of constraints and vari-
ables.  

The remainder of this paper is organized as follows. In 
Section 2, the definitions of a fuzzy measure and a 
λ -fuzzy measure will be reviewed. In Section 3, a novel 
method for fuzzy measure identification will be pro-
posed. In Section 4, one application example of the nov-
el method is demonstrated, using a supplier selection 
problem which happens frequently in the real-world. 
Section 5 is devoted to the discussion of the obtained 
results. Section 6 presents conclusions and recommenda-
tions for further study. 
 

2. Fuzzy Measure 
 

Sugeno [5] presented the theory of fuzzy measures 
and fuzzy integrals as a means of expressing fuzzy sys-
tems in 1974. He further proposed his theory for model-
ing human subjective evaluation processes. In this sec-
tion, we will review the Sugeno’s definitions [5] as a 
background for the novel fuzzy measure identification 
method that will be developed in Section 3. 
Definition 2.1: Let X  be a set. A set function ( )g ⋅  
defined on the set of the subsets of X, ( )Xβ , is called a 
fuzzy measure if it satisfies the following properties:  
Property 1: Boundary conditions 

: ( ) [0,1]g Xβ → , and ( ) 0g ∅ =  and ( ) 1g X = ; 
Property 2: Monotonocity 

, ( ),  if ,A B X A Bβ∀ ∈ ⊆ then ( ) ( )g A g B≤  
Property 3: Continuity 

If ( )kF Xβ∈  for 1 k≤ < ∞ , and the sequence { }kF  
is monotonic (in the sense of inclusion), then 
lim ( ) (lim )k k k kg F g F→+∞ →+∞=  
Remark 2.1: It must be noted that, if X  is finite, then 
Property 3 can be dropped. The following are three spe-
cial cases of fuzzy measures [5]. A fuzzy measure ( )g ⋅  
is said to be 
(a) additive if 

for all , ( )A B Xβ∈  such that A B∩ =∅ ,   
( ) ( ) ( )g A B g A g B∪ = + , 

(b) super-additive if  
for all , ( )A B Xβ∈  such that A B∩ =∅ ,   
( ) ( ) ( )g A B g A g B∪ ≥ + , 

(c) sub-additive if  

for all , ( )A B Xβ∈  such that A B∩ =∅ , 
( ) ( ) ( )g A B g A g B∪ ≤ + , and  

(d) λ -fuzzy measure if  
( ) ( ) ( ) ( ) ( )g A B g A g B g A g Bλ∪ = + + , 

for all , ( )A B Xβ∈  and A B∩ =∅      (1) 
where ] 1, [λ∈ − +∞ .       

In (1), the fuzzy measure is based on the parameterλ , 
which describes the degree of additivity the fuzzy meas-
ure holds. We have three important types of λ -fuzzy 
measures [5]: 
(d1) super-additive if  

0λ > , then ( ) ( ) ( )g A B g A g Bλ λ λ∪ > + , 
(d2) additive if 

0λ = , then ( ) ( ) ( )g A B g A g Bλ λ λ∪ = +  and 
(d3) sub-additive if 

0λ < , then ( ) ( ) ( )g A B g A g Bλ λ λ∪ < + . 
If 1 2{ , ,..., }nX x x x= , i.e. X is finite, the fuzzy meas-

ure can be identified by the following formula [5]:  
1

1 2 1 2
1 1 1 2 1 1

1
1 2

1

({ , , , })

1= (1 ) 1 ,  for -1

n n n

n i i i
i i i i

n
n

n i
i

g x x x g g g

g g g g

λ λ

λ λ λ
λ

−

= = = +

−

=

= + + +

+ − < < ∞

∑ ∑ ∑

∏
 

where ({ }),  1, ,i ig g x i nλ= =  defines the fuzzy den-
sity of the fuzzy measure gλ . If the fuzzy densities 

({ }),  1, ,i ig g x i nλ= =  are given, then in the case 

1

n

i
i

g
=
∑ =1 we have λ =0; while if  

1
1

n

i
i

g
=

≠∑  , the pa-

rameter λ  can be calculated by solving the following 
equation:  

1

1 (1 ).
n

i
i

gλ λ
=

+ = +∏              (2) 

Note that the difficulty for solving equation (2) in-
creases with the number of criteria, n. 
 

3. Fuzzy Measure with Variable Additivity De-
gree 

 
In this section, we will propose a fuzzy measure with 

variable degree of additivity. That is, instead of having a 
unique additivity coefficient λ as in the case of the 
λ-fuzzy measure, the additivity degree depends upon the 
considered subsets as follows 

for all , ( )A B Xβ∈ , such that A B∩ =∅ , 
( ) ( ) ( ) ABg A B g A g B λ∪ = + + . 
Here, ABλ  is the degree of additivity between the 

subsets of criteria A and B. ABλ  belongs to the interval 
[0, 1]. Assume ( )Xβ  is the set of all subsets of an at-
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tribute set X = { 1 2, ,.., nx x x }. The number ABλ  expresses 
the interdependence between the subsets of criteria A and 
B. Therefore, in the sequel, we will call ABλ  an inter-
dependence degree or coefficient. Detailed steps for the 
fuzzy measure identification based on the proposed idea 
of variable additivity are introduced below. 
Procedure 3.1: Fuzzy Measure Construction. 
Step 1: For each arbitrary pair of different attributes, i  
and j , an interdependence coefficient,  i jλ , such that  
0≤  i jλ ≤1, has to be determined. For this purpose, the 
authors suggest the following approaches: 
(i) Based on his/her experiences and knowledge, the de-
cision-maker may subjectively determine these coeffi-
cients as follows. First, the decision-maker defines an 
ordinal scale of interdependence, e.g., complete depend-
ence, very strong dependence, strong dependence, me-
dium dependence, weak dependence and no dependence 
between any two criteria by natural language. The deci-
sion-maker then associates a numerical scale to this or-
dinal scale, e.g., 1.0 for complete dependence, 0.90 for 
very strong dependence, 0.75 for strong positive de-
pendence, 0.50 for medium dependence, 0.30 for weak 
dependence and 0.00 for no dependence. The deci-
sion-maker has to keep in mind that in the process of 
determining the interdependence coefficients, if the in-
terdependence between two attributes or criteria is close 
to 1, one of the two criteria is redundant. The deci-
sion-maker has to drop the redundant criterion. It is up to 
the decision-maker to decide on the threshold 00 1λ< <  
at which the decision-maker will drop one of the two 
criteria or attributes ix  and jx  if  i jλ > 0λ , for any  
i and j. This means that at the end of the process of the 
interdependency coefficients determination, practi-
cally, we will have 0 ≤  i jλ 0λ≤ <1 for any pair of 

criteria and jx  among the remaining ones. 
(ii) The decision maker determines these coefficients 
based on the opinions of experts in the areas related to 
the problem at hand. 
(iii) The coefficient of determination, 2R , which is the 
square of the correlation coefficient [26] between two 
variables, will be used as an estimate of the coefficients 
of interdependence. Here, the correlation coefficient 
measuring the strength of correlation between two vari-
ables can be interpreted as a measure of interdependence. 
For example, assume that the attributes ix  and jx  
stand for the price and product performance of a product, 
respectively. By taking one of the two variables, jx , as 

a dependent variable and another variable, ix , as the 
explanatory variable, then the coefficient of determina-

tion can be computed via the correlation coefficient and 
used as an estimate of  i jλ  by using data on different 
prices and the corresponding product performances. 
(iv) The decision-maker can use the diamond pair-wise 
comparison as explained in [12]. 
Step 2: We define the density of a subset of two criteria 
or attributes },{ ji xx , and the whole set of criteria X, by 

({ , })i j i j ijg x x g g λ= + +  and 
ijjiXxxXx

i
ji

i

gXg λ
≠∈

∈

+= ∑  ,,
max)( , 

respectively. By definition, we should have 
0 ({ , }) 1i j i j ijg x x g g λ≤ = + + ≤  

and  
1max)(

 ,,
=+=

≠∈∈
∑ ijjiXxxXx

i
ji

i

gXg λ . 

Based on the coefficients of pair-wise interdepend-
ence, ijλ  being determined in Step 1 and the last two 
conditions, we can determine the individual densities 

({ })i ig x g= , i = 1,…,n, by solving the following system 
of inequalities: 

0 1i j ijg g λ≤ + + ≤ , for all ix  and jx  in X, ji ≠ , 

1max)(
 ,,

=+=
≠∈∈

∑ ijjiXxxXx
i

ji
i

gXg λ        (3) 

0 1ig≤ ≤ , i = 1,…, n. 
It is easy to see that the system of inequalities (3) has 

a solution. Indeed, let 0i
x , 0j

x  be two criteria such that 

ijjiXxxji
ji

λλ
≠∈

=
 ,,

max00 . Taking ijjiXxxi
ji

g λ
≠∈

−=
 ,,

max10  and 

0ig = , for 0i i≠ , we get a solution to the system. 
When it is possible, the decision-maker may partici-

pate in the determination of the individual densities 
({ })i ig x g= , 1, ,i n= ,  by using his/her experience 

and knowledge about the criteria at hand or by consult-
ing experts. The decision-maker may give a fuzzy esti-
mate on the value of the density ig  for each attribute 

ix . Without any loss of generality and for ease of pres-
entation, we assume that the decision-maker’s fuzzy es-
timation for each density ig to be a triangular fuzzy 
number ( , , )i i i ig a m b= , 0 1i i i ija m b λ≤ ≤ ≤ ≤ − . Then 
the determination of the densities ig , 1, ,i n=  of the 
fuzzy measure can be treated as a multi-objective prob-
lem by assuming that we are willing to maximize all the 
membership functions, ( )i igμ , 1, ,i n= , of the fuzzy 
densities ig , 1, ,i n= . Finally, by using Zimmer-
mann’s approach for solving the fuzzy linear program-
ming problem [17], we get the following problem for the 
determination of the densities: 

Max α                   (4) 

ix
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s.t.  ( ) , 1,...,i ig    i nμ α≥ =   

    1max
,1

=+
≠

∈
=
∑ ij

ji
Xxx

n

i
i

ji

g λ                                                                               

    10 ≤++≤ ijji gg λ , , {1,2,..., }i j n∈ , ,ji ≠  

    ]1,0[∈α , ],[ iii bag ∈ , ni ,...,1= . 
Here, α  represents the α -cut level of the fuzzy 

numbers ,  1, ,ig i n= . In fact, any set of densities that 
satisfies the constraints of the problem (4) can be taken 
as a solution. We look for the maximum value of α  in 
this problem, because the larger the value α , the better 
the precision of the density estimates ig , 1, ,i n=  
being found by solving the problem (4). It is easy to see 
that if we take α =0, 

{1,..., }\{ }
1 maxi ijj n i

b λ
∈

= − , 0ia =  for all 

{1,..., }i n∈ in the problem (4), its system of constraints 
will be reduced to a system which is similar to that of  
problem (3). A solution to such a system of constraints 
can be found by the same way a solution was found for 
the system (3). Therefore, there exists a solution to the 
system of constraints of the problem (4). Thus, the prob-
lem (4) itself has a solution when 

{1,..., }\{ }
1 maxi ijj n i

b λ
∈

= − , 

0ia =  for all {1,..., }i n∈ . 
Step 3: The fuzzy measure is determined based upon the 
densities obtained from the resolution of the problem (4) 
or (3) using the following formula  

({ , })i j i j ijg x x g g λ= + +  for all pairs of criteria  
{ , }i jx x , ,ji ≠  

1max)(
 ,,

=+=
≠∈∈

∑ ijjiXxxXx
i

ji
i

gXg λ       (5) 

ijjiAxxAx
i

ji
i

gAg λ
≠∈∈

+= ∑  ,,
max)(  

for all subsets A of X  such that Card( A )≥ 2 and 
( ) 0g ∅ = . 
In the following proposition we show that the set 

function (5) is a fuzzy measure. 
Proposition 3.1: The set function being defined in (5) is 
a fuzzy measure.  
Proof: By construction, we have ( ) 0g ∅ =  and 

( ) 1g X = , that is, part of Property 1 of Definition 2.1 of 
a fuzzy measure is satisfied. It remains to prove that 

( ) 1g A ≤  for all subsets A of X  such that 
Card( ) 2A ≥ . Let us first prove Property 2 of Definition 
2.1, that is, given two subsets A  and B  of X  such 
that A B⊂ , we have ( ) ( )g A g B≤ . Since A B⊂ , then  

≤∑
∈Ax

i
i

g ∑
∈Bx

i
i

g  and ≤
≠∈ ijjiAxx ji

λ
 ,,

max ijjiBxx ji

λ
≠∈  ,,

max  

Adding these two inequalities, we get 

≤+=
≠∈

∈
∑ ijjiAxxAx

i
ji

i

gAg λ
 ,,

max)(  

ijjiBxxBx
i

ji
i

gBg λ
≠∈∈

+= ∑  ,,
max)(  

Now let us prove that, for any subset A  of X , we 
have 0 ( ) 1g A≤ ≤  for complete satisfaction of Property 
1 of Definition 2.1. If the subset A  contains one or two 
elements, the inequality 0 ( ) 1g A≤ ≤  is satisfied ac-
cording to the constraints of problem (3) or (4). Assume 
now that A  contains more than three criteria. By Defi-
nition 2.1, we have 

ijjiAxxAx
i

ji
i

gAg λ
≠∈

∈

+= ∑  ,,
max)( . 

Therefore, 0)( ≥Ag . Finally, since XA ⊂ , ac-
cording to Property 2 of Definition 2.1, 

1)()( =≤ XgAg . This completes the proof. 
 

4. Application example of the Novel Fuzzy 
Measure Identification Method in Real-World 

MCDM Problems 
 

The provider selection problem is one of the most 
commonly discussed management issues by both man-
agement scholars and real world managers. In this paper, 
the provider selection problem being introduced by In-
ouei and Amagasa [27] will be used to verify the feasi-
bility of the novel method in real-world MCDM prob-
lems. 

Service quality ( 1x ), price ( 2x ), customer satisfaction 
( 3x ) and product performance ( 4x ) are the four most 
commonly used criteria for evaluating a provider. The 
above-mentioned four criteria are usually assumed to be 
independent of each other for the convenience of calcu-
lation. However, in the real world, we may find that ser-
vice quality ( 1x ) influences product price ( 2x ) and cus-
tomer satisfaction ( 3x ). Product price ( 2x ) may influ-
ence customer satisfaction ( 3x ) and product performance 
( 4x ) (since higher cost and thus, higher price products 
usually have better performance). Better quality products 
( 1x ) may be priced ( 2x ) higher. Product performance ( 4x ) 
and price ( 2x ) may influence each other, since a better 
performance product may be priced as a higher market 
segmentation product; while higher cost, and thus higher 
price products sometimes exhibit better design and, thus, 
better performance 4( )x . Product performance 4( )x also 
may influence customer satisfaction ( 3x ) directly. The 
dependence structure of this sample MCDM problem is 
drawn below in Figure 1 as a reference for readers’ better 
understanding. Based upon the rationale and relation-
ships mentioned above, we may find that assuming in-

ghtzeng
註解
example --> Example
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dependence of the criteria is far from being realistic, and 
may be misleading when such a decision problem struc-
ture is used to guide real world managers’ decisions. 
 

1x 2x

3x 4x
 

 
Figure 1. Structure of the Dependence of Criteria in the 

MCDM Example. 
 

Applying Procedure 3.1 for an identification of the 
fuzzy measure, we first assume that the decision maker 
provides the following pair-wise interdependence de-
grees between criteria: 

12 13 140.03,   0.04,   0.03,λ λ λ= = =  
23 240.06,   0.10λ λ= =  and 34 0.03.λ =  

By symmetry, we get   
21 31 410.03,   0.04,   0.03,λ λ λ= = =  

32 420.06,   0.10λ λ= =  and 43 0.03λ = . 
Meanwhile, assume that the decision-maker provides 

the fuzzy estimates of the individual densities ig , 
1, 2,..., 4i =  as the following triangular fuzzy numbers 

1 1 1 1( , , ) (0.01,0.25,0.96),g a m b= =
 

2 2 2 2( , , ) (0.01,0.25,0.90),g a m b= =  
3 3 3 3( , , ) (0.03,0.25,0.94),g a m b= =

 
and 

4 4 4 4( , , ) (0.01,0.15,0.94)g a m b= = . 
One may easily verify that 1α =  is an optimal solu-

tion of the linear programming problem (4) with 
1g =0.25, 2g =0.25, 3g =0.25 and 4g =0.15. Indeed, for 

the value 1α = , the first constraint of problem (5) im-
plies ( ) 1i igμ = , 1,...,4i = . Hence 1g = 0.25, 2g =0.25, 

3g =0.25 and 4g =0.15. 
We have 

, {1,..4}, 
max 0.1iji j i j

λ
∈ ≠

= , then the constraints of 

problem (4) become 
1 20 0.97g g≤ + ≤ , 

1 30 0.96g g≤ + ≤ , 

1 40 0.97g g≤ + ≤ , 

2 30 0.94g g≤ + ≤ , 

2 40 0.90g g≤ + ≤ , 

3 40 0.97g g≤ + ≤ , 
1max

,}4,3,2,1{

=+
≠

∈
∈
∑ ij

ji
Xxxi

i
ji

g λ  

Thus all the constraints of the problem (4) are satisfied. 
Hence, according to the formula (5), the set function de-
fined by 

ijjiAxxAx
i

ji
i

gAg λ
≠∈∈

+= ∑  ,,
max)( for all subsets A  of  

},,,{ 4321 xxxx  containing at least two criteria is a fuzzy 
measure. In the following computations, we denote the 
attributes 1 2 3, ,x x x  and 4x  by 1, 2, 3 and 4 respec-
tively. 

1 2 12({1,2}) 0.25 0.25 0.03 0.53g g g λ= + + = + + = , 
13({1,3}) 0.25 0.25 0.04 0.54g g g aλ= + + = + + = ,

 
1 4 14({1,4}) 0.25 0.15 0.03 0.43g g g λ= + + = + + = , 
2 3 23({2,3}) 0.25 0.25 0.06 0.56g g g λ= + + = + + = ,, 
2 4 24({2,4}) 0.25 0.15 0.10 0.50g g g λ= + + = + + = , 
3 4 34({3,4}) 0.25 0.15 0.03 0.43g g g λ= + + = + + = , 
1 2 3({1,2,3}) max{ , , 1,2,3,   }

                0.25 0.25 0.25 0.06 0.81,
ijg g g g i j i jλ= + + + = ≠

= + + + =  
1 2 4({1,2,4}) max{ , , 1,2,4,   }

                 0.25 0.25 0.15 0.10 0.75,
ijg g g g i j i jλ= + + + = ≠

= + + + =  
1 3 4({1,3,4}) max{ , , 1,3,4,   }

                0.25 0.25 0.15 0.04 0.69,
ijg g g g i j i jλ= + + + = ≠

= + + + =  
2 3 4({2,3,4}) max{ , , 2,3,4,   }

                0.25 0.25 0.15 0.10 0.75,
ijg g g g i j i jλ= + + + = ≠

= + + + =  
and 

1 2 3 4({1,2,3,4})
                     max{ , , 1,2,3,4,   }

                    0.25 0.25 0.25 0.15 0.10 1.00.
ij

g g g g g
i j i jλ

= + + +

+ = ≠

= + + + + =  

Assume that four providers, A, B, C and D, are avail-
able as alternatives for evaluations. Scores of the pro-
viders, based upon the four given criteria 1 2 3, ,x x x  and 

4x , are given below in Table 1. 

Table 1. Scores of the providers based on the four given crite-
ria. 

Alternatives SERVICE 
QUALITY Price Customer Product 

Performance
A 55 85 85 45 
B 55 45 75 85 
C 85 75 55 65 
D 75 65 65 75 

 
Let us now recall the definition of the Choquet inte-

gral. Let ( )g ⋅  be a fuzzy measure defined on a finite set 

1 2{ , ,..., }nX x x x=  and : [0,1]h X →  be a function rep-
resenting the evaluation of 1 2, ,..., nx x x  such that 

1 2( ) ( ) ... ( )nh x h x h x≥ ≥ ≥ . Then the Choquet integral of 
the function ( )h ⋅  is given by the following equation [5, 
7, 28-37]: 
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1 1

1 2 1

( ) ( ) ( ) [ ( ) ( )] ( )

              ... [ ( ) ( )] ( )
n n n n nC hg h x g H h x h x g H

h x h x g H
− −= + −

+ + −
∫  (6) 

where 1 2{ , ,..., }i iH x x x= . 
The given alternatives can be evaluated by Choquet 

Integral (6). To normalize the values in TABLE I, we 
divide each number by 100, so as to assure that all the 
numbers lie within the interval [0,1], as required in the 
Choquet integral. Then, evaluation results can be 
reached. 

For provider A, 2 3 1 4( ) ( ) ( ) ( )h x h x h x h x≥ ≥ ≥ . The 
Choquet integral of ( )h ⋅  can be calculated by (6) as 

4 4 1 4 3

3 1 2 2 3 1

( ) ( ) ( ) [ ( ) ( )] ( )

                 [ ( ) ( )] ( ) [ ( ) ( )] ( )
              0.45 1 [0.55 0.45] 0.81 [0.85 0.55] 0.53
                 [0.85 0.85] 0.25 0.70

C hg h x g H h x h x g H

h x h x g H h x h x g H

= + −

+ − + −
= × + − × + − ×
+ − × =

∫

For provider B, 4 3 1 2( ) ( ) ( ) ( ).h x h x h x h x≥ ≥ ≥ The Cho-
quet integral of ( )h ⋅  can be calculated by (6) as  

2 4 1 2 3

3 1 2 4 3 1

( ) ( ) ( ) [ ( ) ( )] ( )

[ ( ) ( )] ( ) [ ( ) ( )] ( )
0.45 1 [0.55 0.45] 0.81 [0.75 0.55] 0.53
[0.85 0.75] 0.25 0.662

C hg h x g H h x h x g H

h x h x g H h x h x g H

= + −

+ − + −

= × + − × + − ×
+ − × =

∫
 

For provider C, 1 2 4 3( ) ( ) ( ) ( ).h x h x h x h x≥ ≥ ≥ The 
Choquet integral of ( )h ⋅  can be calculated by (6) as  

3 4 4 3 3

2 4 2 1 2 1

( ) ( ) ( ) [ ( ) ( )] ( )

[ ( ) ( )] ( ) [ ( ) ( )] ( )
0.55 1 [0.65 0.55] 0.81 [0.75 0.55] 0.53
[0.85 0.75] 0.25 0.709

C hg h x g H h x h x g H

h x h x g H h x h x g H

= + −

+ − + −
= × + − × + − ×
+ − × =

∫
 

Finally, for provider D, 4 1 3 2( ) ( ) ( ) ( ).h x h x h x h x≥ ≥ ≥  
The Choquet integral of ( )h ⋅  can be calculated by (6) 
as  

2 4 3 2 3

1 3 2 4 1 1

( ) ( ) ( ) [ ( ) ( )] ( )

[ ( ) ( )] ( ) [ ( ) ( )] ( )
0.65 1 [0.65 0.65] 0.81 [0.75 0.65] 0.53
[0.75 0.75] 0.25 0.703

C hg h x g H h x h x g H

h x h x g H h x h x g H

= + −

+ − + −

= × + − × + − ×
+ − × =

∫
 

Based upon the obtained values, we can rank the pro-
viders as, BADC  which implies that provider 
C is the most favorable provider. 
Remark 4.1: It is recommended to start solving the 
problem (4) by taking 1α = . 
 

5. Discussions 
 

λ − fuzzy measure is one of the most popular fuzzy 
measures used in MCDM. In this paper we have pre-

sented an alternative to this fuzzy measure. It is based on 
the evaluation of the pair-wise interdependence between 
the criteria. In the introduced novel fuzzy measure iden-
tification method, the decision-maker is also given the 
opportunity to provide a fuzzy assessment of the fuzzy 
densities. The actual fuzzy density of each criterion is 
found via the resolution of the system of linear inequali-
ties (3) or the linear programming problem (4). Then, the 
density of the other subsets of criteria can be calculated 
using the formula (5). 

Meanwhile, compared to other fuzzy measure identi-
fication methods, including λ -fuzzy measure identifica-
tion, the proposed method is quite simple, since it re-
quires the decision-maker to make a pair-wise assess-
ment of the interdependence coefficient between criteria 
and a fuzzy assessment of the densities. In Procedure 3.1 
we have provided some ways of assessment of the 
pair-wise interdependence coefficients. 

To demonstrate the above-mentioned advantages, we 
examine the same example treated in Section 4, using 
the traditional −λ fuzzy measure identification method. 
Assume that the AHP pair-wise comparison matrix be-
tween the criteria is 

1 1/ 3 1/ 3 1/ 2
3 1 1/ 2 1/ 4
3 2 1 1
2 4 1 1

H

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

First, initial weights, ( )0.110,  0.179,  0.326,  0.384 , 
can be obtained by using AHP. Let the fuzzy measure 
weights be ( )0.110,  0.179,  0.326,  0.384c=w , where 
c  is a positive number; i.e., 

1 1: ({ }) 0.110w g x cλ = , 2 2: ({ }) 0.179w g x cλ = , 

3 3: ({ }) 0.326w g x cλ = , 4 4: ({ }) 0.384w g x cλ = , 
and 

1 2 3 4( ) ({ , , , } 1g X g x x x xλ λ= = , 
2 3

1 2 3 4
, , ,

( ) .i i j i j k
i i j i i j k

g X w w w w w w w w w wλ λ λ λ
>

= + + +∑ ∑ ∑
 

By assuming 3λ = , we get 0.569c =  (refer Inouei and 
Amagasa [27]). A fuzzy measure characterized by the 
following values can be obtained: 1({ })λg x =0.063, 

2({ }) 0.102λg x = , 3({ }) 0.186λg x = , 4( ) 0.219λg x = , 
1 2 1 3 1 4({ , }) 0.184, ({ , }) 0.283, ({ , }) 0.322,λ λ λg x x g x x g x x= = =

2 3 2 4 3 4({ , }) 0.344, ({ , }) 0.388, ({ , }) 0.526,λ λ λg x x g x x g x x= = =

1 2 3({ , , }) 0.427λg x x x = , 1 2 4({ , , }) 0.523λg x x x = , 

1 3 4({ , , }) 0.688λg x x x = , 2 3 4({ , , }) 0.789λg x x x = . Then 
1 1( ) ({ }) 0.063,λ λg H g x= =  2 1 2( ) ({ , }) 0.184,λ λg H g x x= =  

3 1 2 3 4({ }) ({ , , }) 0.427 and ( ) ( ) 1.λ λ λ λg H g x x x g H g X= = = =
 Based upon the fuzzy measure obtained, we can com-
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pute the Choquet integral for providers A, B, C and D by 
(5), as follows. 

For Provider A, we have 2 3 1 4( ) ( ) ( ) ( )h x h x h x h x≥ ≥ ≥ , 
then the Choquet integral of h(.) is  

4 4 1 4 3

3 1 2 2 3 1

( ) ( ) ( ) [ ( ) ( )] ( )

[ ( ) ( )] ( ) [ ( ) ( )] ( ),

( ) 0.45 1+[0.55-0.45] 0.427+[0.85-0.55]

0.184+[0.85-0.85] 0.063=0.548.

C hg h x g H h x h x g H

h x h x g H h x h x g H

C hg

= + −

+ − + −

= × ×

× ×

∫

∫
 

For Provider B, we have 4 3 1 2( ) ( ) ( ) ( )h x h x h x h x≥ ≥ ≥ , 
then the Choquet integral of ( )h ⋅  is 

2 4 1 2 3

3 1 2 4 3 1

( ) ( ) ( ) [ ( ) ( )] ( )

[ ( ) ( )] ( ) [ ( ) ( )] ( ),

( ) 0.45 1 [0.55 0.45] 0.427 [0.75 0.55]

0.184 [0.85 0.75] 0.063 0.536.

C hg h x g H h x h x g H

h x h x g H h x h x g H

C hg

= + −

+ − + −

= × + − × + −

× + − × =

∫

∫
 

For Provider C, we have 1 2 4 3( ) ( ) ( ) ( )h x h x h x h x≥ ≥ ≥ ; 
then the Choquet integral of ( )h ⋅  is  

3 4 4 3 3

2 4 2 1 2 1

( ) ( ) ( ) [ ( ) ( )] ( )

[ ( ) ( )] ( ) [ ( ) ( )] ( ),

( ) 0.55 1 [0.65 0.55] 0.427

+[0.75 0.65] 0.184 [0.85 0.75] 0.063 0.617.

C hg h x g H h x h x g H

h x h x g H h x h x g H

C hg

= + −

+ − + −

= × + − ×

− × + − × =

∫

∫
 

For Provider D, we have 4 1 3 2( ) ( ) ( ) ( )h x h x h x h x≥ ≥ ≥ , 
then the Choquet integral of h(.) is  

2 4 3 2 3

1 3 2 4 1 1

( ) ( ) ( ) [ ( ) ( )] ( )

[ ( ) ( )] ( ) [ ( ) ( )] ( ),

( ) 0.65 1 [0.65 0.65] 0.427

[0.75 0.65] 0.184 [0.75 0.75] 0.063 0.668.

C hg h x g H h x h x g H

h x h x g H h x h x g H

C hg

= + −

+ − + −

= × + − ×

+ − × + − × =

∫

∫
 

 
Table 2. Scores and ranks obtained based on the proposed 

novel and traditional fuzzy measure identification methods. 

NOVEL METHOD Traditional method[17] 
Alternatives 

RANK Fuzzy 
Integral Rank Fuzzy  

Integral 
A 3 0.700 3 0.548 
B 4 0.622 4 0.536 
C 1 0.709 2 0.617 
D 2 0.703 1 0.668 

 
The scores and ranks obtained based upon the pro-

posed novel and traditional λ -fuzzy measure identifica-
tion methods are summarized below in Table 2. By the 
proposed method, provider C is the most favorable pro-
vider. On the other hand, using traditional fuzzy measure 
identification, the preference of providers is ordered as 
D C A B , which implies that provider D is the 

most favorable provider. From this comparison, we can 
conclude that the proposed method can enhance the tra-
ditional method and lead to new results. 

In most existing fuzzy measure identifications,  
2 2n −  subjective estimates ( ( ),  ,  ,g A A X A X⊂ ≠  
A ≠∅ ) must be determined and the resolution of a 
quadratic optimization problem or (2) is required. As 
mentioned in the introduction, as far as we know, the 
best method [12] requires ( 1)n n× −  data. Meanwhile, 
with our method, a maximum of ( 1) / 2n n× −  subjec-
tive estimates are needed for the determination of the 
pair-wise interdependence between criteria ijλ , i j≠  (or  

( 1) / 2n n n× − +  estimates when the decision-maker is 
able to provide the fuzzy estimation of the fuzzy densi-
ties ( ),  1, ,ig x i n= ). In addition, from computational 
point of view, generally, existing optimization fuzzy 
measure identification methods involve non linear objec-
tive functions and a large number (generally 2 2n −  ) of 
constraints.  Our method is computationally simpler in 
the sense that by solving the system (3) (or the linear 
programming problem (4)) and using formula (5), the 
fuzzy measure is completely identified. 

Now we show that the fuzzy measure identified using 
the proposed fuzzy measure identification method is not 
a λ − fuzzy measure in general. As an example, we will 
show that the fuzzy measure identified in the MCDM 
application of Section 4 cannot be identified as a 
λ − fuzzy measure. Thus, it is not a λ − fuzzy measure. 
Let us assume, by contrast, that there exists 

0 [ 1, [λ ∈ − +∞  such that the fuzzy measure identified in 
the MCDM application in Section 4 is a 0λ − fuzzy 
measure. For computation convenience, we denote the 
attributes 1 2 3, ,x x x  and 4x  by 1, 2, 3 and 4 respec-
tively. 

For criteria 1 and 2, we have 1 0.25g =  and 

2 0.25.g = Thus, ({1} {2})g ∪ = 1 2 12g g λ+ + =
0.25 0.25 0.03+ + =  0.53.  By using (1), we will reach  0

1 2 1 2
0

({1} {2})

                 0.25 0.25 0.25 0.25 0.53.

g g g g gλ

λ

∪ = + +

= + + × × =
 

Thus, 0 (0.53 0.50) 0.0625 0.48.λ = − =  
Similarly, for criteria 2 and 4, 

2 4 24({2} {4}) 0.25 0.15 0.10 0.50.g g g λ∪ = + + = + + =  
By using (1), we will reach 

0
2 4 2 4

0

({2} {4})

                 0.25 0.15 0.25 0.15 0.50.

g g g g gλ

λ

∪ = + +

= + + × × =
 

Thus, 0 (0.50 0.40) (0.25 0.15) 2.67λ = − × = . 
From the calculation results, we see that 0λ  is not 

unique, as it must be with a λ − fuzzy measure. This 
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contradiction means that the fuzzy measure obtained 
through our identification method is not a λ − fuzzy 
measure in general. 
 

6. Conclusions 
 

In this paper, a novel method for identifying fuzzy 
measures was proposed. The proposed method is practi-
cal and simple, requiring the decision-maker to provide 

( 1) / 2n n −  pair-wise comparisons of interdependence 
between criteria, and if possible a fuzzy evaluation of the 
densities ( ),  1, ,ig x i n=  (individual importance or 
weight of each of the criteria). These two requirements 
are feasible and acceptable, from a practical point of 
view. From the viewpoint of computation, the proposed 
method reduces the fuzzy measure identification prob-
lem to a system of linear inequalities or a linear pro-
gramming problem involving very few variables - the 
densities ( ),  1, ,ig x i n= , and a limited number of 
constrains - which can be solved easily. Relative to other 
identification methods, which are usually  solved by 
means of optimization approaches with a comparatively 
huge number of variables and constraints equal to 
2 2n −  ( ( )g ∅ , and ( )g X are known), the proposed 
method is simpler. We also have shown that the fuzzy 
measure identified via our method is not a λ -fuzzy 
measure, in general; so the fuzzy measure identified by 
our method is new. This fuzzy measure presents a poten-
tial for real-world applications. Exploring new ways of 
identifying such fuzzy measures is a worthy direction of 
research. 
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